
1

Statecharts for the many:Statecharts for the many:
Algebraic State Algebraic State

Transition DiagramsTransition Diagrams

Marc FrappierMarc Frappier
GRIL GRIL –– Groupe de recherche en Groupe de recherche en

ingingéénierie du logicielnierie du logiciel

2

PlanPlan

Statecharts and information system Statecharts and information system
specificationsspecifications
ASTD : Algebraic State Transition ASTD : Algebraic State Transition
DiagramsDiagrams
Semantics of ASTDSemantics of ASTD
ConclusionConclusion

3

StatechartsStatecharts

graphical notationgraphical notation
hierarchy + orthogonalityhierarchy + orthogonality

hierarchical stateshierarchical states
AND states (parallel)AND states (parallel)
OR states (choice)OR states (choice)

nice for single instance behaviournice for single instance behaviour
parameterized states in parameterized states in HarelHarel’’ss seminal paper seminal paper
(SCP 87)(SCP 87)

““nevernever”” implemented or formalisedimplemented or formalised

4

A library in statecharts A library in statecharts

5

ProblemsProblems

only describes behaviour of a single bookonly describes behaviour of a single book
how to deal with several books?how to deal with several books?

put n copies of put n copies of bookbook in parallelin parallel
not defined in statecharts or UMLnot defined in statecharts or UML
available in ROSE RT, but it is not quite what we want hereavailable in ROSE RT, but it is not quite what we want here

can discard an unreturned bookcan discard an unreturned book
could add a guard to could add a guard to discarddiscard

unnecessary complexityunnecessary complexity
could make discard a transition from an inner state could make discard a transition from an inner state
of of loanloan

introduce coupling between introduce coupling between book book and and loanloan

6

Potential solutionsPotential solutions

book knows about the structure of loanbook knows about the structure of loan
makes loan less reusablemakes loan less reusable
makes maintenance more difficultmakes maintenance more difficult

book

Acquire

Discard Renew
Return

Lend

loan

7

Adding membersAdding members

8

ProblemsProblems

a member can borrow several books in parallela member can borrow several books in parallel
cancan’’t t ““easilyeasily”” express that in statecharts or UMLexpress that in statecharts or UML

State explosionState explosion

two calls to loantwo calls to loan
one in member, one in bookone in member, one in book
they both get the they both get the lendlend eventevent
OK if only one memberOK if only one member
KO if we have several members trying to borrow the same KO if we have several members trying to borrow the same
bookbook

could remove loan from membercould remove loan from member
must add guard to must add guard to UnregisterUnregister to check for completed loanto check for completed loan
loose visual ordering constraintloose visual ordering constraint

9

Potential solutionsPotential solutions

remove loan from memberremove loan from member
loose visual ordering constraint between member loose visual ordering constraint between member
and loanand loan

replaced by a guardreplaced by a guard

need state variableneed state variable

member

10

The single instance view:The single instance view:
A weakness of statechartsA weakness of statecharts

both statecharts and UML state machines are both statecharts and UML state machines are
designed to represent a single instancedesigned to represent a single instance

egeg, controller, object of a class, etc, controller, object of a class, etc
they offer no convenient means to express they offer no convenient means to express
relationships between multiple instancesrelationships between multiple instances
in practice, designers only describe the single in practice, designers only describe the single
instance behaviourinstance behaviour

leave it to the implementer to figure out the multiple leave it to the implementer to figure out the multiple
instance caseinstance case

11

A solution: Process algebraA solution: Process algebra

CCS, CSP, ACP, LOTOS, EBCCS, CSP, ACP, LOTOS, EB33, ..., ...
algebraalgebra

operators to combine process expressionsoperators to combine process expressions
sequence, choice, interleave, synchronisation, guard, ...sequence, choice, interleave, synchronisation, guard, ...
quantificationquantification

operators are the essence of abstractionoperators are the essence of abstraction
combine small units to build large unitscombine small units to build large units
operators foster abstraction by masking internal detailsoperators foster abstraction by masking internal details

12

A Process expression for booksA Process expression for books

book(b : BookId) =

Acquire(b,_)
•

loan(_, b)¯

•

Discard(b)

Sequential
composition

Kleene
closure

matches any
value

13

A process expression for loansA process expression for loans

loan(mId:Member, IDbId:BookID) =

nbLoans(mId) < maxNbLoans(mId)
 Lend(mId, bId)

•
Renew(bId)¯

•
Return(bId)

guard

14

A process expression for membersA process expression for members

member(m : MemberId) =

Register(m, _, _)
•
(8 b : BookId : loan(m, b)¯)
•
Unregister(m)

interleave
quantification
over all books

15

Interleave quantificationInterleave quantification

8 x : {1,2,3} : P(x)
=

P(1) 8 P(2)8P(3)

16

Main process expressionMain process expression

main =
(8 b : BookId : book(b)¯)

7
(8 m : MemberId : member(m)¯)

Synchronisation over
common actions

17

Synchronisation over common Synchronisation over common
actionsactions

a(1) • b(1) • c(1)
7

|x : T : a(x) • b(x) • c(2)
=

a(1) • b(1) • STOP

quantified
choice

18

ASTDASTD

Algebraic State Transition DiagramsAlgebraic State Transition Diagrams
ASTD = statecharts + process algebraASTD = statecharts + process algebra

graphical notationgraphical notation
power of abstractionpower of abstraction

statecharts become elementary process statecharts become elementary process
expressionsexpressions

combine them using operatorscombine them using operators
formal semanticsformal semantics

operational semanticsoperational semantics

19

ASTD OperatorsASTD Operators

: sequence: sequence
|| : choice: choice

|x|x : quantified choice: quantified choice

¯ : Kleene closure: Kleene closure
 : guard: guard
|[A]||[A]|: parallel composition with synchronisation on : parallel composition with synchronisation on AA
8 interleave, interleave, 7 parallel compositionparallel composition
8x, |[]|x : quantified version

ASTD call ASTD call : allows recursive calls: allows recursive calls

20

A book ASTDA book ASTD

final state

operators
applied from
left to right

initial
state

final transition:
can trigger only if its source

is in a final state

21

Closure applied to an ASTDClosure applied to an ASTD

¯ means execute the
ASTD an arbitrary
number of times,
including 0

when the ASTD is in a
final state, it can start
again from its initial state

example traces are
empty trace
e1,e2,e2,...,e1,e1,e2, ...

22

The closure ASTD typeThe closure ASTD type

¯ denotes the type constructor for a closure
body is an ASTD (of any type)

(¯, body)

23

The closure state typeThe closure state type

¯0 is the closure state
type constructor
started? is a boolean
value that indicates if its
component has started
its first iteration
s is the state of its
component

(¯0 ,started?, s)

24

States of a closureStates of a closure

initial stateinitial state
is the initial state of its componentis the initial state of its component

final statesfinal states
its initial stateits initial state
final states of its componentfinal states of its component

function that
defines the

initial state of
an ASTD

closure ASTD closure initial state

function that determines if
a state is final

25

Final stateFinal state

an ASTD does not terminate when its current an ASTD does not terminate when its current
state is finalstate is final
a final state simply a final state simply enablesenables transitions of another transitions of another
ASTD within aASTD within a

closureclosure
sequencesequence

26

A member ASTDA member ASTD

27

A loan ASTDA loan ASTD

28

The main ASTDThe main ASTD

n-ary operator

operands of ||

29

Power of abstractionPower of abstraction

suppose you have two statecharts, suppose you have two statecharts, aa and and bb
you want to compose them as followsyou want to compose them as follows

execute execute aa an arbitrary number of timesan arbitrary number of times
then execute then execute bb an arbitrary number of timesan arbitrary number of times
then start over again, an arbitrary number of timesthen start over again, an arbitrary number of times

cancan’’t do it in statecharts without peeking into t do it in statecharts without peeking into aa
and and bb’’ss structure with guardsstructure with guards

introduce a dependency between the compound and introduce a dependency between the compound and
the componentsthe components

30

Power of abstractionPower of abstraction

sequential
composition

31

The sequence ASTD typeThe sequence ASTD type

denotes the sequence ASTD type constructordenotes the sequence ASTD type constructor
leftleft and and rightright are are ASTDsASTDs

(, left, right)

32

The sequence state typeThe sequence state type

0 denotes the sequence
state type constructor
side denotes the current
side of the sequence

left
right

s denotes the state of the
side component

(0, side, s)

33

State transitionsState transitions

(0,left,1)

(0,left,2)

(0,right,4)

34

State transitionsState transitions

(0,left,1)

(0,left,2)

(0,left,2)

35

State transitionsState transitions

(0,left,(¯0,ÿstarted, 1))

(0,right,(¯0,started, 4))

(0,right,(¯,started, 4))

36

Initial and final states of a sequence Initial and final states of a sequence
ASTDASTD

37

Operational semanticsOperational semantics

first used by Milner for CCSfirst used by Milner for CCS
transitionstransitions

ASTD a can execute ASTD a can execute ss from state s and move to from state s and move to
state sstate s’’

38

Operational semanticsOperational semantics

transitions defined by a set of inference rulestransitions defined by a set of inference rules
rules for each operatorrules for each operator
allows nonallows non--determinismdeterminism

if several transitions can fire from s, then one is if several transitions can fire from s, then one is
nondeterministicallynondeterministically chosenchosen
no priorityno priority

39

Inference rulesInference rules

first rules deals with environment, noted first rules deals with environment, noted ([])([]), to , to
manage variables introduced bymanage variables introduced by

quantificationsquantifications
process parametersprocess parameters

40

Automaton inference rulesAutomaton inference rules

execute an
automaton
transition

similar to traditional
d of an automaton

execute a transition
of the component

41

Closure inference rulesClosure inference rules

execute from the initial state of the component

execute the component when started

42

Sequence inference rulesSequence inference rules

execute on left

execute on right
when left is final

execute the right
component

43

Choice: initial and final statesChoice: initial and final states

Choice state
(|0,side,s)

44

Choice inference rulesChoice inference rules

execute the first component
from its initial state

execute the second component
from its initial state

execute the first component
when it has been selected

execute the second component
when it has been selected

45

Choice exampleChoice example

(|0,¶,¶)

e1

e2

e3

e4

(|0,fst,2)

(|0,fst,3)

(|0,snd,5)

(|0,snd,6)

46

Integration with the business class Integration with the business class
diagramdiagram

book member
Register
Unregister

Lend
Renew
Return

Acquire
Discard
ListBook

loan

bookId
title

memberId
name
nbLoans
maxNbLoans

date

1*

borrower

47

State variablesState variables

the system trace is the only state variablethe system trace is the only state variable
entity attributes are functions on this traceentity attributes are functions on this trace
attributes can be used anywhere in attributes can be used anywhere in ASTDsASTDs

guard, quantification sets, ...guard, quantification sets, ...

nbLoansnbLoans(mId : (mId : MemberIdMemberId) =) =
RegisterRegister((mIdmId, _) : 0,, _) : 0,
LendLend(mId(mId, _) : 1 + , _) : 1 + nbLoansnbLoans(mId),(mId),
ReturnReturn(bId(bId) :) : ifif borrowerborrower(bId(bId) =) = mIdmId

then then nbLoansnbLoans(mId) (mId) -- 1,1,
UnregisterUnregister((mIdmId, _) : , _) : ^̂;;

48

ConclusionConclusion

process algebra operators can improve the process algebra operators can improve the
expressiveness of statechartsexpressiveness of statecharts
complete, precise models of information systemscomplete, precise models of information systems

not just single instance scenarios, but also multiple instance not just single instance scenarios, but also multiple instance
scenariosscenarios

future workfuture work
tools for animationtools for animation
model checkingmodel checking
code generationcode generation

