Statecharts for the many:
Algebraic State
Transition Diagrams

Marc Frappier

GRIL — Groupe de recherche en
ingénierie du logiciel

UNIVERSITE DE

Plan

m Statecharts and information system

specifications

m ASTD : Algebraic State Transition

Diagrams
B Semantics of ASTD

B Conclusion

Statecharts

m oraphical notation

m hierarchy + orthogonality

B hierarchical states

= AND states (parallel)
® OR states (choice)

m nice for single instance behaviour

m parameterized states in Harel’s seminal paper

(SCP 87)

® “never” implemented or formalised

A library in statecharts

Acquire

Lend
' Renew
Return

Problems

m only describes behaviour of a single book

® how to deal with several books?

B put n copies of book in parallel
||

m available in ROSE RT, but it is not quite what we want here

B can discard an unreturned book

® could add a guard to discard
[|

® could make discard a transition from an inner state
of loan
[|

Potential solutions

B book knows about the structure of loan
B makes loan less reusable

B makes maintenance more difficult

Acquire

Discard

Adding members

main

member

Register

Unregister

Problems

®m a2 member can borrow several books in parallel
|

two calls to loan

® one in member, one in book
m they both get the lend event

m OK if only one member

m KO if we have several members trying to borrow the same
book
m could remove loan from member

® must add guard to Unregister to check for completed loan

B loose visual ordering constraint

Potential solutions

B remove loan from member

B Joose visual ordering constraint between member
and loan

m replaced by a guard

B need state variable

The single instance view:
A weakness of statecharts

B both statecharts and UML state machines are
designed to represent a single instance

m cg, controller, object of a class, etc

m they offer no convenient means to express
relationships between multiple instances

B in practice, designers only describe the single
instance behaviour

®]Jeave it to the implementer to figure out the multiple
instance case

A solution: Process algebra

m CCS, CSP, ACP, LOTOS, EB’, ...
m algebra

B operators to combine process expressions
B scquence, choice, interleave, synchronisation, guard, ...
B quantification

® operators are the essence of abstraction

m combine small units to build large units

m operators foster abstraction by masking internal details

A Process expression for books

book(b : BookId) =

matches any

Sequential value
composition

loan(_, b)*

’ Kleene
(b)

A process expression for loans

loan(mId:Member, IDbld:BookID) =

(mld) < (mId)
(mld, bld)

(bId)*
(b1d)

A process expression for members

member (m . MCIIleI’Id) — interleave

guantification
over all books

(m, _,)

(ll'b : Bookld : loan(m, b)*)

(m)

Interleave quantification

Il'x: {1,2,3} : P(x)

P(1) Il P2) IP(3)

Main process expression

main =

(lll'b : Bookld : book(b)*)

(IIlm : Memberld : member(m)™)

Synchronisation over
common actions

Synchronisation over common
actions

a(1) « b(1) * c(l)
|

T * b €

a(1) * b(1) * STOP

ASTD

m Algebraic State Transition Diagrams
m ASTD = statecharts + process algebra

m oraphical notation

® power of abstraction

m statecharts become elementary process
eXpressions

B combine them using operators

B formal semantics

B operational semantics

ASTD Operators

: sequence
: choice
0 : quantified choice
: Kleene closute
: guard

: parallel composition with synchronisation on
® interleave, parallel composition

m : quantified version

bJ

. allows recursive calls

A book ASTD

initial
state

book(bld : int)

O Acquire(bld)

@\Discard(bld)

operators
applied from
left to right

| mid : int

loan(bld,mld)

final state

final transition:
can trigger only if its source
IS in a final state

Closure applied to an ASTD

B k means execute the
ASTD an arbitrary
number of times,
including 0

m when the ASTD is 1n a

final state, it can start
again from its initial state

m cxample traces are
B empty trace

mele2e2,..elele2, ..

>@—e1

| a |

The closure ASTD type

(%, body)

B % denotes the type constructor for a closure

® body is an ASTD (of any type)

The closure state type

B %o is the closure state
type constructor

started? 1s a boolean

value that indicates if its

component has started (%o ,Started?, S)
its first iteration

s 1s the state of its
component

States of a closure

function that
defines the

initial state of closure ASTD closure initial state
an ASTD

a2l state of its co

b (%o, false, init (b))

m final states
B its initial state

m final states of its component

A

(%o, started?, s)) = final,(s)V —started?

function that determines if
a state is final

Final state

B an ASTD does not terminate when its current
state 1s final

m 2 final state simply enables transitions of another

ASTD within a

® closure

B sequence

A member ASTD

member(mld : int), aut

Register(miq) ||| bld : int

Unregister(mid) loan(bld,mlid)

A loan ASTD

loan(bld : int, mid : int)

Renew(bld)

The main ASTD

n-ary operator

member(mid) book(bld)

operands of ||

Power of abstraction

B suppose you have two statecharts, - and

B you want to compose them as follows
B execute . an arbitrary number of times
® then execute = an arbitrary number of times

m then start over again, an arbitrary number of times

m can’t do it in statecharts without peeking into
and ’s structure with guards

® introduce a dependency between the compound and
the components

Power of abstraction

sequential
composition

The sequence ASTD type

m denotes the sequence ASTD type constructor
O and are ASTDs

The sequence state type

denotes the sequence
state type constructor

denotes the current
side of the sequence
= |eft
= right

m denotes the state of the
side component

State transitions

State transitions

State transitions

(= o,left, (xo,—started, 1))
e3

(= o,right, (%o started, 4))

(= o,right, (k,started, 4))

Initial and final states of a sequence
ASTD

init((ED 1.7))

final((2,, left, s))

final((=,, right, s))

(o, left, init (1))
final,(s) A final,.(init(r))
final,.(s)

Operational semantics

m first used by Milner for CCS

B transitions

O

s =g 8

m ASTD a can execute o from state s and move to
state s’

Operational semantics

m transitions defined by a set of inference rules
m rules for each operator

®m allows non-determinism

B if several transitions can fire from s, then one is
nondeterministically chosen

B no priotity

Inference rules

m first rules deals with environment, noted

manage variables introduced by

B quantifications

. PrOCESS parameters

similar to traditional ey § & & rule S

o of an automaton

d((loc,ny,n2),0’, g, final?) execute an

o, _ o automaton

(auto, 1, h, 5) —— (auts, na, b #mit (v (nz))) transition

= ((ﬁnal” = final,,,,,y(s)) A
gAho' =oANh =h<{n — s})[T]

o,I’ N
S —u(n) S ..
autg —F execute a transition
. (e} .
(auts, n, h,s) — (auto,n, h, s) of the component

Closure inference rules

execute from the initial state of the component

o,I’ /

(%o, started?, s) LN (%o, true, s’)

*1

execute the component when started

Sequence inference rules

execute on left

execute on right
when left 1s final

execute the right
component

Choice: initial and final states

Choice state
(|o,side,s)

(lo;
ﬁnal;(zmz‘()V final,. (init(r))
final;(s)

init ((| L

final((]o, fst
final((|o, snd, s

1 | | 1

)
final((lo, L, 1))
5))
)

Choice inference rules

execute the first component
from its initial state

execute the second component
from its initial state

execute the first component
when 1t has been selected

execute the second component
when 1t has been selected

L
—
oF
<
S
"
3!
L
R
Q
=
@

Integration with the business class

diagram

loan

IL.end
Renew
Return

book date member

Acquire Register

Discard Unregister

ListBook memberld

booklId name

title nbl.oans
maxNbLoans

State variables

m the system trace is the only state variable

B entity attributes are functions on this trace

m attributes can be used anywhere in ASTDs

® guard, quantification sets, ...

(mld : Memberld) =
(mId, _) :0,
(mId,) 1+ (mId),
(bId) : if (bld) = mld
then (mId) - 1,
(mId, _) :L;

Conclusion

B process algebra operators can improve the
expressiveness of statecharts

m complete, precise models of information systems

B not just single instance scenarios, but also multiple instance
scenarios

m future work
®m tools for animation
® model checking

m code generation

