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Preface

In mathematics, one speaks of 2 = 1, an equation, as having solutions z = 1 and
z = —1. But £ =1 and z = —1 are equations too, since they both have the form
of two expressions separated by ‘=’. If they are all three equations, then what
gives the latter two the additional quality of being solutions?

There are two characteristics of solutions. The first is that they solve something,

and in the example above we have the diagram

& z=-1,

showing that we say that ‘z = 1’ solves ‘z? = 1’ because of the implication ‘if
z =1 then z? = 1". (Note that the reverse implication does not hold.) The same
applies for ‘z = —1°.

The second characteristic of solutions is that the value they determine can be
recovered by inspection, without further calculation. It hardly needs saying that
‘1’ is a value for z that makes x = 1 true: it can be seen almost without thought.

One can also regard computer programming, or program development as it is
known these days, in terms of ‘solving’ and ‘solutions’. Instead of equations, how-
ever, we will have programs: some programs will be regarded as solving others (we
will say ‘refining’); and some programs will be so simple we will regard them as
solutions (we will say ‘code’).

Using a special notation for statements like ‘set z so that 22 = 1’, we can
write specifications in a way that looks like programming. And by equipping them
with a carefully defined meaning, we can say that they indeed are programs. The
above specification, for example, we would write ‘z: [z? = 1]’ , and the is refined
by relation ‘C’ between programs would then allow us an analogue of the above ‘is
solved by’ diagram:

S
8
N
Il
it
—N—
INRIN
8 8
I
| —
—_

x1



xii  Preface

All three components of the above are programs. The first characteristic of so-
lutions is repeated in the implication ‘if we require an z such that z? = 1, then
x : =1 will deliver one’. The second is repeated in that the value delivered by the
programs on the right — they are both code — can be discovered by running them
on a computer. And that requires no thought at all.

This book teaches elementary programming in the style of the above analogy:
that specifications and code are all programs; that there is a refinement order
between programs; and that there is a specially restricted sub-language called ‘code’
that allows programs written in it to be executed with ‘no thought at all’. The
thinking is necessary elsewhere, to find the code that refines a given specification.

The approach rests on the work of Dijkstra, Hoare, and Floyd [Dij76, Hoa69,
Flo67]; and the programming language is Dijkstra’s guarded commands, extended
with specification constructs like ‘z: [z? = 1]’ above. The language itself is pre-
sented in the early chapters, and each of its constructs is characterised by the
refinement laws that it satisfies. The effect on a computer is described informally,
as an aid to the intuition.

Later chapters are split between case studies and more advanced programming
techniques. Each case study treats a programming example from beginning to end,
using the methods available at that point, and is well known rather than especially
intricate. The more advanced programming techniques are procedures, recursion,
recursive data structures, modules and finally state transformation (including data
refinement).

The other chapters deal with the necessary infrastructure, most notably the
predicate calculus and basic types. The former has its own laws, and a large
collection of those appears as Appendix A. That avoids relying on any particular
method of logical proof from first principles (properly the subject of a different
book). Indeed, the introductory Chapter 1 uses the predicate calculus before its
proper exposition in Chapter 2: the refinement calculus, not the predicate calculus,
is our main subject. Nevertheless Chapter 2 is independent, and may be read first
if desired. The basic types are the ordinary sets of numbers from arithmetic,
augmented with constructions for powersets, bags, and sequences.

A concluding chapter summarises the main features of our programming style,
and discusses its effect on the practices of documentation, modification, testing,
and debugging.

Beyond the conclusion are several chapters more advanced than the main text.
The first two treat fairly complex case studies; the first is iterative (an example
of dynamic programming); the second is seriously recursive. The third advanced
chapter is a case study in specification itself, thus concentrating on modules, design
(of a system), design changes, and both ordinary and data refinement as a tool in
careful design.

The final chapter gives the semantics for all the preceding material.

Appendices include a collection of propositional and predicate calculus laws,
answers to some exercises, and a summary of the refinement laws introduced in the

© Carroll Morgan 1990, 1994, 1998



Preface xiii

text. The last is sometimes convenient to have at hand when deriving programs, or
studying others’ derivations, and for that reason it may be copied and distributed
for educational use. Those adopting the book for teaching may obtain from the
publisher a separate booklet containing both the summary of refinement laws and
answers to all the exercises.

The book is intended to be useful both to those learning to program and to those
who — programmers already — would like to make the link between their existing
skill and the specifications from which their programs (should) spring. Experience
based on nearly 10 years’ exposure to second-year computing undergraduates sug-
gests, however, that the best approach is at first to exercise a fairly light touch on
the refinement laws. For beginning programmers they should assist, not prescribe:
at that stage, the list of refinement laws is for reference, not for certification. And
learning to use invariants for iterations is work enough on its own.

Light touch or no, the underlying theme of specification, refinement and code
is one that students respond to, and it informs their approach to other courses
and to computing generally. More experienced programmers may recognise some
of those features in specification and development methods such as Z and VDM
[Jon86, Hay93, Kin90], for parts of which the refinement calculus forms an adjunct
or even an alternative.

© Carroll Morgan 1990, 1994, 1998



Differences from the first edition

This second edition represents a rearrangement, modification and augmenting of
the first.

The early chapters, on the programming language, have been rearranged so
that the programming language features are introduced consecutively, without the
intervention of chapters on more technical matters. That technical material has
now been delayed, leaving in the original position only just enough to get on with
the programming language itself.

The approach to procedures and parameters, including recursive procedures, has
been modified considerably, to make it simpler. At the cost of a little generality, the
original separate treatment of parameters has been replaced by a more conventional
treatment of (recursive) procedures and parameters together.

There is a substantial amount of new material, including: a section on functions
and relations (in the ‘Z style’); a complete chapter on recursive types (for example,
trees), and simple control structures for their use; a section on functional refine-
ment, a special and very common case of state transformation whose rules are much
simpler than the fully general ones; and two more ‘advanced’ case studies, adding
recursion and data refinement to the techniques illustrated more substantially.

The first extra case study, ‘the largest rectangle under a histogram’, is well
known not to be especially easy whatever technique is used; we develop a proper-
(not simply tail-) recursive solution.

The second extra case study, ‘a mail system’, illustrates at some length the
sometimes treacherous interaction of specification, design, re-specification and re-
design that leads towards implementation of a system rather than just a program.
Data refinement figures prominently.

xiv
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Chapter 1

Programs and refinement

1.1 The traditional view

Traditionally, programs are collections of detailed instructions to a computer. They
are written in a programming language, whose form (syntax) and meaning (seman-
tics) are precisely defined. Programs are easy to execute (computers do that), but
hard to understand.

The study of methods for making programs is programming methodology. We are
concerned with methods that take a specification of what the computer is to do, and
aim to produce a program which will cause the computer to do it. Specifications
might be written in English, or in some more mathematical style. They are hard
to execute (computers cannot do that in general), but easy to understand — or
they should be.

There would be little need for this book if all programs were understandable, or
all specifications executable. But alas neither is true — and matters are likely to
stay that way.

Specifications must be understood, because each is a contract between a pro-
grammer and his client. The client relies on the specification for his use of the
program; the programmer relies on the specification for his construction of the
program. A complex specification will spawn subspecifications, each defining a
component whose construction the programmer may then delegate to his subordi-
nates. That turns the programmer into a client, and his subordinates become pro-
grammers; the subspecifications are contracts between him and them. Ultimately,
programs are contracts between the lowest-level programmers and the computer.

1.2 A novel view

Our departure from tradition is a small one: we simply banish the distinction
between specifications, subspecifications (super-programs?), and programs. To us,



2 Programs and refinement

client

program as contract

programmer
client
program. .. program. . .
programmer programmer
client client
program. .. program. ..
computer

Figure 1.1 A programming hierarchy

they are all programs; what we give up is that all programs are directly executable.

What we gain instead is a more uniform approach in which programs play a
role at every level. Figure 1.1 illustrates the resulting hierarchy. At the top of
the hierarchy we find abstract programs, not necessarily executable. Section 1.4.3
describes some of the constructions they can use.

At the bottom of the hierarchy we find executable programs, which we call
code. The constructions used there are typical of imperative languages: assignment
commands, sequential composition, alternation, iteration, and recursion. Section
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Programs as contracts: refinement 3

cost £10 (paperback)
220V outlet

safe working load 1000kg
splash-proof

needs at least 4Mb

cost £10 (paperback), £20 (hardback)
220/110V outlet

safe working load 2000kg
water-resistant to 50m

needs at least 2Mb

M Ir e e

Figure 1.2 Informal examples of refinement

1.5.2 describes some code.

In the middle, we find programs in which both abstract and executable constructs
appear. They contain too much detail for convenient comprehension, but still too
much abstraction to be executed. We meet those later, in our case study chapters.

1.3 Programs as contracts: refinement

A program has two roles: it describes what one person wants, and what another
person (or computer) must do. With respect to any particular program, we distin-
guish the client and the programmer. Remember that a single person can be both:
a systems analyst is a programmer with respect to his firm’s clients, but a client
with respect to his own programming team.

When a contract is made by negotiation between a client and a programmer, each
party has primarily his own interests at heart. The client wants the program to do
more: to be more accurate, to apply in more situations, to operate more quickly.
The programmer wants more freedom in making the program: more leeway in
the selection and presentation of results, more information about the situations in
which the program is to run, more access to cheap and standard implementation
techniques. Their aims are complementary, and the result is always a compromise.

We take the client’s point of view in describing the negotiation: if program prog2
is better than program progl, for the client, we write progl C prog2. That relation
C, between programs, is called refinement: we say that prog2 refines progl. In
Figure 1.2 are some examples of refinement from more familiar settings. Figure
1.3 illustrates the role of C in contract negotiation.

© Carroll Morgan 1990, 1994, 1998



4 Programs and refinement

program
as
contract

client

programmer

C

>
>

Figure 1.3 Refinement in contract negotiation

initial
state

action
of

program

final
state

Figure 1.4 The imperative view of programming

1.4 Abstract programs

1.4.1 Initial and final states

Any program takes a computer from an initial state to a final state. That view,
illustrated in Figure 1.4, is called imperative, and it is appropriate for most com-
puter languages in general use today. We suppose that the data on which the
computer is to operate (the input) are placed in the initial state; the results of the
computation (the output) are found subsequently, in the final state.

The state of a computer is a collection of named values. The names are called
variables, and the values are taken from ordinary mathematical discourse: natural
numbers, integers, real numbers, characters, etc. A state maps variables to their

values.

For the rest of this chapter, let our variables be just z, y, and z; and let their
values be real numbers, from the set R. We shall see later that the set R is the
type of x, y, and z. Here are two states that differ in the value of y only:

state0:

x| 2
y | 17
z| 3

Z

statel y
z

o W1

An imperative program is used to take state( initially to statel finally.

© Carroll Morgan 1990, 1994, 1998



Abstract programs 5

1.4.2 Descriptions of states

Pictures of state mappings, however, are not very useful for our development of
programs: they say both too much and too little. They say too much because
the value of every variable must be given exactly, even the variables in which we
might not be interested. They say too little because each gives only one state, and
to understand a program completely we need to know its behaviour on all initial
states. That is far too many pictures. ..

We describe states rather than draw them. A formula describes a state if it is
made true by the mappings in the state. And we say that a state satisfies a formula
if that formula describes it. Thus each of the formulae z =2, z 4+ 2 < y, and z # 4
describes state(. This formula describes state( exactly:

r=2Ny=17TANz=3.

The formula y? = z, for example, describes statel.

As an extreme case, the formula true describes all states (because it is true in
all states). Similarly, the formula false describes no states (because it is true in no
states).

We use the predicate calculus as the language of our formulae. It includes the
usual equations (like z = y) and relations (z < 17), the logical connectives A (and),
V (or), = (not), and = (implies); and it has the familiar quantifiers V (for all) and
3 (there exists).

1.4.3 Specifications

The specification is the principal feature of abstract programs. Its precondition
describes the initial states; its postcondition describes the final states; and its
frame lists the variables whose values may change. If a computer could execute it,
this would be the effect:

If the initial state satisfies the precondition then change only the vari-
ables listed in the frame so that the resulting final state satisfies the
postcondition.

It is deliberate that a specification can leave some possibilities unconstrained. If the
initial state does not satisfy the precondition, we do not know what will happen;
one possibility is that the computer does not deliver any final state at all — that
is, it fails to terminate. If there are several possible final states satisfying the
postcondition, we do not know which will be chosen (nondeterminism).

Here is a specification which assigns to y the square root of z, provided z lies
between 0 and 9:

precondition |0 <z <9
postcondition | 4% = z y: [O <zr<9,¢y*= x] ) (1.1)
frame | y

© Carroll Morgan 1990, 1994, 1998



6 Programs and refinement

z: [true , y* = z] Make z the square of y.

y: [z >0, y? = 1] Make y a square root of z, pro-
vided z is not negative.

)

[s#{}, e€s] Make e an element of the set s,
provided s is non-empty.

z: [b? > 4dac , az®+ bxr + ¢ = 0] Make z a solution to the quadratic
equation, provided the discrimi-
nant is non-negative.

Figure 1.5 Example specifications

On the right is the same specification written more compactly: in general, for
precondition pre, postcondition post, and frame w, the compact form is

w: [pre , post].

Specification (1.1) leaves some possibilities unconstrained: we do not know what
would happen if it were applied to an initial state which mapped = to 10, because
the precondition would not be true. Even when the precondition is true, there is
still some uncertainty: applied to state0, it will produce either statel (above) or
state2 below — but beforehand we do not know which it will be.

x 2
statel: y | —v2
z 3

Figure 1.5 lists some other examples of specifications. Notice how in those exam-
ples (especially the quadratic) the use of formulae allows a specification to capture
the intention without necessarily giving the method. It can say ‘what’ without
having to say ‘how’.

1.4.4 Refinement of specifications

A specification is improved (for the client) by strengthening its postcondition, so
that the new postcondition implies the old: if a book is available in paperback and
hardback, then it is available in paperback at least. Requiring the square root to
be non-negative is another example: if you have a non-negative square root, then
you at least have a square root. So (1.2) refines (1.1):

y: [0<z <9, P =sAy>0]. (1.2)

© Carroll Morgan 1990, 1994, 1998



Ezecutable programs 7

Specification (1.2) is better for the customer because he knows more about the
final state: he can depend on y > 0, if he wants to, and he could not before.

In general, we have the following law of refinement, of which (1.1) C (1.2) is an
example:

Law 1.1 strengthen postcondition If post’ = post, then

w: [pre , post] T w: [pre, post'].
O

(For now, read ‘=’ as implication; it is defined in Chapter 2.) The requirement
post’ = post must hold whenever the law is used, and it is called the proviso. The
symbol O indicates the end of a law (or similar), and the resumption of normal
text.

A different kind of improvement is gained by weakening a precondition, so that
the old precondition implies the new: if at least 4Mb is required, then certainly
at least 2Mb is required. Requiring our square root program to operate for any
non-negative z is another example: if z is non-negative and no greater than 9, then
 is still non-negative. So (1.3) refines (1.2):

y:[OSx,yQZx/\yZO]. (1.3)

Specification (1.3) is better than (1.2) because it works even when z > 9.
The general law for preconditions is the following:

Law 1.2 weaken precondition If pre = pre’, then

w: [pre , post] T w: [pre’, post].
(Il

Note that it too has a proviso.

1.5 Executable programs
1.5.1 Code

Specifications are written in a language (predicate calculus) whose meaning is
known precisely. They are unambiguous, and very convenient because they are so
expressive. Why not build a computer that executes them?

The simple answer to that question is ‘it’s impossible’. It can be proved that no
computer, as the term is presently understood, can be built which could execute
all specifications.

The problem is that our formulae are written in too powerful a language: we can
say too much with them. We could use a weaker language — but the weaker the

© Carroll Morgan 1990, 1994, 1998



8 Programs and refinement

language, the more involved become the constructions that we need to say what
we must. And the more involved they are, the more likely it is that the client
and programmer will misunderstand each other at the very beginning, before the
design, modularisation, coding, integration, debugging... The enterprise would be
doomed before it had started.

Our approach is to have it both ways. The programming language includes
specifications, for their expressive power, but has also constructions which are
designed to be executable. We call them code.

1.5.2 The assignment command

The notation w:=F is an assignment command, and is our first example of code.
It changes the state so that the variable w is mapped to the value F, and all other
variables are left unchanged. Assignment commands form the basis of imperative
programming languages; they are easy to execute provided the expression F is
constructed from constants and operators that the programming language provides
(such as 0, 1, 2, +, —, x and +). Below we give a law of refinement for assignments.

Law 1.3 assignment If pre = post[w\F], then
w,z: [pre , post] C w:=FE.
O

The formula post[w\E] is obtained by replacing in post all occurrences of w by
E. (Such substitutions are explained more fully in Section A.2.1.) Note that the
frame w, z can include variables z not assigned to in the code: the frame says that
x may change, not that it must.

Law 1.3 allows a programmer to implement a specification w: [pre , post] by
code w:=F that is better from the client’s point of view — it is better because
where post may have allowed several final values for w, now it allows only one, and
the customer knows exactly which one it will be. In quite a different sense, it is
better for the programmer too: a computer can execute it. Laws like assignment
1.3 are the programmer’s tools; his expertise is in deciding which to use.

In a programming language with a positive square root operator v (and assuming
infinite precision arithmetic), Law 1.3 gives us this refinement immediately:

y: [0<2<9, y’=2Ay>0] C y:=Va.
That is because we can prove the relevant proviso:

0<zr<9

= “Jz well-defined in given range”
(Vz)’ ==
= “definition of /”

© Carroll Morgan 1990, 1994, 1998



Mized programs 9

<— increasing clarity

programs code

increasing executability —

Figure 1.6 Code is the language of executable programs

(Vr)2=zA\z>0
= (¥P=2Ay>0)[y\Vz].

(For now, read ‘=’ as equivalence; it is defined in Chapter 2.)
If \/ is not provided by the programming language, then more complex — but
still executable — coding features must be used. And that is the usual case.

The overall refinement of specification (eventually) to code is made in steps, each
introducing a little more executability, or a little more efficiency. A sequence
results, each element refined by the next:

spec C mizedy C - - - C mized, C code .

We see later that the intermediate steps mized; mix specifications and code to-
gether. Indeed, in such sequences it is difficult to say when specifying stops and
coding begins, and there is nothing to be gained by trying. We call all of them pro-
grams, whether executable or not, and we reserve the term ‘specification’ for frame
and predicate pairs w: [pre , post] only; they can be an entire program (like spec),
or parts of programs (occurring in mized;). We use the term ‘code’ for programs
written entirely in our executable language (which we define shortly). Usually, an
assignment command is code; a specification is not.

All that is summarised in Figure 1.6. Program development moves, via a series
of refinement steps, within the outer box (of programs) towards the inner box (of
programs that are code as well).

Developing programs, in that sense, is the main topic of this book.

1.6 Mixed programs

Mixed programs occur during development. They contain both abstract and ex-
ecutable constructs, linked by program constructors like sequential composition,
here defined informally:

The effect of the program progl; prog2 is the effect of progl followed
by the effect of prog2.

For example, the mixed program
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10 Programs and refinement

z:=9;
y: [true , y? = 1]

sets  to 9 and y either to 3 or to —3.
Constructors like sequential composition are introduced by their own laws, which
are the subject of later chapters.

1.7 Infeasible programs
Suppose Specification (1.3) is refined still further (by Law 1.2) to
y: [true , Y=z Ay > O] . (1.4)

Here, the programmer has given up too much. His job in Specification (1.4) is
impossible, as we can easily show: since z, y are in R there are some allowed initial
values of x for which no final value of y will do. Such a specification is infeasible.

Infeasible specifications cannot be refined by any code; and so agreeing on a
contract containing an infeasible specification means eventual disappointment for
the client, and possible financial ruin for the programmer. For that reason it is
important to be able to check for feasibility:

Definition 1.4 feasibility The specification w: [pre , post] is feasible iff
pre = (Jw: T -post) ,

where T is the type' of the variables w.
(Il

The right-hand side is read “there exists a w of type T such that post”. The
symbol 7 is further discussed in Chapter 2, and types are the subject of Chapter
6

Applying Definition 1.4 to Specification (1.4), the programmer tries to prove
true = (EIy:R-yQZx/\yEO)

under the assumption that z is of type R. But he cannot: the right-hand side is
equivalent to z > 0, which is not implied by true. Hence (1.4) is infeasible. For
historical reasons, infeasible programs are sometimes called miracles.

Remember that code is designed to be executable: all code, therefore, is feasible.
(See Exercise 1.17.)

'In Chapter 6 the notion of type will be generalised to include so-called ‘local invariants’, and
then a more comprehensive definition (6.5) of feasibility will be appropriate. It does not concern
us now, but must be borne in mind if ever referring to the definition above once local invariants
have been introduced.
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Some common idioms 11
1.8 Some common idioms

We can compact our new notations somewhat by taking advantage of common
idioms. Often the precondition of a specification is just true, for example, indicating
termination in all circumstances. In that case we just omit it:

Abbreviation 1.5 default precondition

w: [post] = w: [true , post] .
O

The symbol ‘ =’ indicates a definition, and is used in preference to equality when
the left-hand side is newly introduced. (Colon " is used instead of membership
‘€’ in the same circumstances.)

When the frame is empty and the postcondition is true, we have a command
that either fails to terminate (because its precondition is false), or terminates but
changes nothing (because the frame is empty). We call those assumptions, and
they are related to the practice of ‘annotating’ a program with formulae that are

supposed to hold at various points. With that in mind we have

Abbreviation 1.6 assumption

{pre} =:[pre, true] .
a
As a special case (to strengthen further the resemblance to annotating programs),

we allow the semicolon that would normally indicate sequential composition to be
omitted if it follows an assumption. Thus the program

{0<z<9}y:=Vz (1.5)

sets y to the non-negative square root of z provided z lies between 0 and 9 inclusive.
If z does not fall within that range, then {0 < z < 9} aborts, effectively aborting
the whole of (1.5).

The similarity between (1.5) and (1.2) is not accidental, and suggests some
further correspondences. One is

Law 1.7 simple specification Provided E contains no w,

w:=EFE = w:|w=E|.

If w and E are lists, then the formula w = E means the equating of corresponding
elements of the lists.
|

Law 1.7 together with a law relating assumptions and preconditions will allow
us to show that (1.5) and (1.2) are equal. The law is
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12 Programs and refinement

Law 1.8 absorb assumption An assumption before a specification can be absorbed
directly into its precondition.

{pre'} w: [pre , post] = w: [pre' Apre, post] .
O

Law 1.8 highlights the fact that ‘aborting now’ (at {pre’'}) is the same as ‘aborting
later” (at [pre/ A ---) in imperative programs. (See Exercise 1.6.)
With those new laws, the proof of equality runs as follows:

{0<2<9}y:=vx

= “simple specification 1.7”
{0<z <9} y: [y = V]

= “absorb assumption 1.8”
y:[0<2 <9, y= /1]

= “rewrite postcondition”
y:[0<z<9, ¥ =zAy>0].

With the comment “rewrite postcondition” we are merely relying on the fact that
for reals z and y

Y=zAy>0 = y=+7.

1.9 Extreme programs

We finish with some specification pathology. From the client’s point of view, the
worst specification of all is

w: [false , true].

It is never guaranteed to terminate (precondition false); and even when it does,
it has complete freedom in its setting of the variables (postcondition true). As
a contract, it allows any refinement at all: infinite loops, programs setting w to
arbitrary values — even programs that change variables other than w. We call it
abort.

Slightly better is the program that always terminates, but guarantees no partic-
ular result:

w: [true , true].

It can be refined to any terminating program that changes only w; we can imagine
that it just chooses w at random. We call it choose w.

Better still is the program which always terminates, changing nothing. Its frame
is empty:

: [true , true].
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FEzxercises 13

We call it skip.
Best of all is the infeasible program that always terminates and establishes the
impossible false:

w: [true , false].

No computer can execute that program; no contract based on it could ever be met.
We call it magic.

Most of the above are seldom written deliberately in programs (skip is the
exception). But we need their names if only to reason about them.

1.10 Exercises

Exercises marked with © are answered in Appendix B.

Ex. 1.1 © ‘The programmer’s job is to take specifications, via a sequence of

refinement steps, to code. Hence the more refined the client’s requirements, the

fewer refinement steps remain for the programmer to do, and the easier his job.’
The above argument suggests the opposite of Figure 1.3. Where is the error?

Fr. 1.2 QO Recall Specification (1.1) from p.5. Write a new specification that
finds a square root y of z if x is non-negative but no more than 9, and sets y to 0
if  is negative.

FEzx. 1.3  Revise your answer to Exercise 1.2 so that when z is negative initially
the specification does not choose any particular final value for y, but still termi-
nates.

Fz. 1.4 ©  Which of these refinements are valid? (Use strengthen postcondition
1.1 and weaken precondition 1.2).

L. z: [x>0]|:7x [z = 0]

2. z: [z >0, true] C?z: [z =0, true]
3. 2z: (>0, 2=0C%:[z=0, z >0]
4. z: [z =0, 2 >0]C?z: [z >0, £ =0]
5. y: [z > ,x>y>0]g?y:[x>y20]
6. y: [I>y>0][7y [y = 0]

Ty [z>0, 2>y >0]C%: [y=0]

Fz. 1.5  What refinement relations hold between Specification (1.1) and those
in Exercises 1.2 and 1.37 (You cannot yet prove them.)
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14 Programs and refinement
Ezr. 1.6 Use absorb assumption 1.8 to show that
{pre'} w: [pre , post] = {pre} w: [pre’ , post] .

Ex. 1.7 0  Give an informal argument to show that contracting the frame is a
refinement; that is, argue that

w,z: [pre , post] T w: [pre, post].
(That refinement appears later as contract frame 5.4.)
Fz. 1.8 O Prove that your answer to Exercise 1.2 is feasible.

FEx. 1.9  Prove that your answer to Exercise 1.3 is feasible.

Ex. 1.10 ©  Show that the following is not feasible:
y: >0, v =zAy>0|.

Explain informally why it is not.

FEz. 1.11 O Describe informally the program

: [false , false].

Is it magic? (Is it feasible?) Is it skip? (Can it change w?) Is it abort? (Is it
ever guaranteed to terminate?)

FEx. 1.12 O What is the effect of adding to a program an assumption that might
not be true during execution? Are there circumstances in which that has no effect
at all?

FEx. 1.13 O Is it a refinement to strengthen or to weaken assumptions?

Ex. 1.14 O Prove this equality:

Law 1.9 merge assumptions

{pre'} {pre} = {pre' Apre} .
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FEzercises 15

Ezr. 1.15 Show that assumptions can be removed from a program uncondition-
ally, as expressed in this law:

Law 1.10 remove assumption Any assumption is refined by skip.

{pre} C skip.

O

Does that mean that assumptions are code?

FEz. 1.16  Show that neither strengthen postcondition 1.1 nor weaken precondition
1.2 can refine an infeasible specification to a feasible one.

Ex. 1.17 O ‘Infeasible specifications cannot be refined by any code’ (p.10). From
that, show that all code is feasible.

Ex. 1.18 ©  Show that anything refines abort: that is, that
w: [false , true] LT w: [pre, post],

for any formulae pre and post.

FEx. 1.19  Show that magic refines anything: that is, that
w: [pre , post] T  w: [true, false],

for any formulae pre and post.
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Chapter 2

The predicate calculus

2.1 1Its relevance

The pre- and postconditions of specifications are predicate calculus formulae. And
some refinement rules have formulae attached as provisos, meaning that the rule is
applicable only if its attached formula is true — which may require a proof. Thus
we use the predicate calculus in two ways: for describing, and for reasoning.

Predicate calculus was developed by logicians well before the appearance of com-
puters. With it, they hoped to formalise human reasoning about mathematics at
least. The truth or falsity of any conjecture was to be decided as follows:

1. Express the conjecture as a formula A. (That requires a precise notion of
the meaning of formulae.)

2. Using a precise system of proof, given beforehand, either prove A or its
negation —A.

The system of proof (based on axioms and inference rules) was designed so that
there could never be any doubt about whether a text was a proof or not. Finding
a proof, however, remained as much a problem as before.

In fact, it became harder to find proofs — and not only because incorrect ones
were newly excluded! The rigorous rules each expressed very small reasoning steps,
and so proofs required very many of them. But in a theoretical sense that did not
matter: every true formula could be proved in that way.

Predicate calculus is of practical concern to computer scientists, however. To
use it effectively, we must avoid long proofs. We do that in three ways. First, we
choose our laws of program refinement so that they generate few proof obligations.
For example, we do not include feasibility checks at every stage, because infeasible
programs cannot lead to (incorrect) code — they lead to no code at all. They lose
time, but not human life.

Second, we use routinely the more advanced techniques of logical argument
(proof by contradiction, etc.) which have themselves been justified formally by
others. We will not justify them ourselves.

16



Terms 17

Finally, in each program to be developed we look for suitable notation of our
devising, appropriate to the characteristics of the problem. We might assume some
properties of the structures involved, calling them ‘obvious’; others we might prove.

In summary: We do not use or advocate any particular system of formal logi-
cal reasoning with the predicate calculus (axiomatic, natural deduction, tableaux,
etc.). Our use of the predicate calculus is based on familiarity (eventually!) with a
number of predicate laws, usually equalities between formulae, which are used to
reduce a complex formula to a simple one. That is how other calculi in mathematics
are employed; we only do the same.

2.2 Terms

Terms (also called expressions) are built from variables, constants, and functions.
Thus z on its own is a term (it is a variable); and 1 is a term (it is a constant);
and z 4+ 1 is a term (it is formed by applying the function + to the two terms z
and 1). A state, which maps variables to values (recall Chapter 1), determines the
values of terms: one speaks of a term having some value in a state. In a state that
maps z to three, the term z has the value three (trivially), and 0 has the value
zero (in every state, in fact: that is why it is called a constant), and z + 1 has the
value four.

Our wvariables will have short lower-case italic names, drawn from the Roman
alphabet.

Our constants will have their usual mathematical names, like 0 and 7. (The real
number constants e and i will not cause trouble.)

Our functions will have their usual mathematical names too, like square root
v/, plus +, and factorial ! . Some of those take one argument (y/ and !), some
take two (+), and the position of the arguments can vary: sometimes the function
is written before its argument (1/), sometimes between its arguments (+), and
sometimes after its argument (!). The number of arguments a function takes is
called its arity.

We often need to introduce new functions, of our own, just for a particular
problem. For those, the syntax is more regular: they will have short lower-case
sanserif names, in the Roman alphabet. Their arguments follow them, separated by
spaces. For uniformity, we use that convention even for the mathematical functions
log, sin, etc.

Terms are made from all the above. A term is either

1. a variable;

2. a constant; or

3. a function applied to the correct number of other terms, depending on its
arity.

Figure 2.1 lists some terms.
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18 The predicate calculus

0

x
r+1
log =

sin(m/2)

(a+b) x 3!

Figure 2.1 Some terms

false
1< (a+2)
(z+1)=7

even 6

T €eR

Figure 2.2 Some simple formulae

2.3 Simple formulae

Simple formulae! are built from terms and predicate symbols. The best-known
predicate symbols represent the binary relations from arithmetic: <, =, < etc.
Like functions, predicates have an arity; for binary relations, the arity is two.
Again like functions, predicates are applied to terms.

Unlike functions, a predicate applied to (the correct number of) terms is not
another term: it is a simple formula. Simple formulae do not have general values
like terms; instead, they take only the values true and false.

For conventional predicates (like binary relations) we use the usual notation.
Predicates that we introduce ourselves will be short Roman sanserif names, and
their arguments will follow them, separated by spaces (as for our functions).

Finally, there are the two constant predicates true and false. In every state, the
first is true and the second is false.

Figure 2.2 lists some simple formulae.

!They are called atomic formulae in the logic literature.
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Figure 2.3 Truth tables for propositional connectives

A B | AANB A B || AvB
true | true true true | true true
true | false | false true | false | true
false | true | false false | true || true
false | false | false false | false | false
A B |A=B A B |As B

true | true true true | true true
true | false | false true | false | false
false | true true false | true false
false | false true false | false true

A -A

true || false

false || true

2.4 Propositional formulae

Propositional formulae are built from simple formulae, using propositional connec-
tives. The connectives are A (and), V (or), = (not), = (implies), and < (if and

only if, or iff). (As nouns, they are conjunction, disjunction, negation, implication

and equivalence.) Except for -, all have two arguments, written on either side; the
single argument of — is written after it.

Like simple formulae, propositional formulae are either true or false, once given
a state. If, for example, A and B are propositional formulae, then the propositional
formula A A B is true exactly when both A and B are true. That is summarised
in this table:

A B || AANB
true | true true
true | false | false
false | true || false
false | false || false

A complete set of ‘truth tables’ for the five connectives is given in Figure 2.3. In

a formula A = B, the subformula A is the antecedent, and B is the consequent.

Following convention, we allow the abbreviation ¢ < b < ¢ (and similar) for the
propositional formula a < b A b < c.
Figure 2.4 gives some propositional formulae.
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20  The predicate calculus

Figure 2.4 Some propositional formulae

2.5 Quantifiers
2.5.1 Universal quantification

A universally quantified formula is written
Vz-A),

where z is a variable, called the bound variable, and A is some other formula, called
the body. It is true exactly when A is true for all values of z, where it is understood
that we know the set from which those values of z are drawn (for example, the real
numbers). We also allow a list of bound variables, as in (Vz,y +.A). There, the
quantification is true exactly when the body is true for all values of those variables
chosen independently. The order in the list does not affect the meaning.

Consider this parody of the distributive law from arithmetic:

a+(bxec) = (a+b)x(a+c).

Although one would say informally ‘that is false’, it is in fact true in some states.
(Map all three variables to one-third.)
But the quantified formula

(Va,b,c-a+(bxc)=(a+0b)x(a+c)) (2.1)
is identically false, because it is not the case that the body is true for all values of

a, b, and c.
Now consider the similar formula

(Vb,coa+(bxc)=(a+b)x(a+c)), (2.2)

in which we have quantified only b and c. It depends on a; and it is true when a
is zero, and false otherwise.
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2.5.2 Free and bound variables

Formula (2.2) depends on a, but not on b or ¢. Variable a is a free variable;
variables b and ¢ are not free, because they are bound by the quantifier V. In fact,
variables b and ¢ are just place-holders in that formula, indicating the positions
at which all values are to be considered. Changing their names does not affect the
formula (provided the new names do not conflict with existing ones). Thus

(Vd,e-a+(dxe)=(a+d)x (a+e))

has the same meaning as (2.2). Formula (2.1) has no free variables, since a, b, ¢
are bound; it does not depend on the value of any variable.
In general, bound variables are those bound by a quantifier, asis = in (V z - A); all
free occurrences of = in A itself become bound occurrences in the larger (Vz - A).
Section A.2.1 further discusses free and bound variables.

2.5.3 Existential quantification

Existential quantification is used to express ‘there exists’. An existentially quanti-
fied formula is written

(3.%"./4),

where z and A are as before. It is true exactly when there exists a value for z that
makes A true. So the existentially quantified formula

(Fa,b,cra+(bxc)=(a+b)x (a+c))

is true. Free occurrences of z in A are bound in (Jz - .A) just as they are in

Vz-A).

2.5.4 Typed quantifications

A typed quantification indicates explicitly the set from which values for the bound
variable are drawn. For example, let Z denote the set of all integers, and N the set
of all natural numbers (non-negative integers). Then (Jz : Z -z < 0) is true, but
(3z : Nz < 0) is false (because 0 is the least natural number). In general, typed
quantifications are written

(Vz:T-A) and (Hz:T-A),

where T denotes some set of values. The variable z then ranges over that set.

If we know beforehand the set from which values are drawn, we can use the
simpler untyped quantifiers; the typing is then understood from context. But
when several such sets are involved simultaneously, we use typed quantifiers.
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true
T #3
y>0=>y#0
(Vz:R-(Fy:C-y?=1))
a+b=ce@r-0<r<bAha=bxc+r)

Figure 2.5 Some general formulae

2.6 (General) formulae

Now we draw together all the above. A formula is any one of the following:

A simple formula.

- A, where A is a formula.

ANB, AV B, A= B, or A< B, where A and B are formulae.
(Vz:T-A)or (3z: T-.A), where z is a list of variables, T' denotes a set,
and A is a formula.

==

That definition allows nested quantifications, such as
Va:R-(Fb,c:R-a+(bxc)=(a+b)x(a+c)))

(which is true), and the application of propositional operators to quantifications,
such as

t#0=>3Fy:Z-0<yAy<z),

true if z is a natural number.
Figure 2.5 gives some general formulae.

2.7 Operator precedence

Strictly speaking, a term like 2 4+ 3 x 4 is ambiguous: is its value fourteen or
twenty? Such questions can be resolved by parentheses — 2+ (3 x 4) vs (2+3) x 4
— but they can be resolved also by general precedence rules. The usual rule from
arithmetic is that x is done before +: we say that x has higher precedence.

We adopt all the usual precedence rules from arithmetic, adding to them that
functions have highest precedence of all: thus /4 + 5 is seven, not three. When
several functions are used, the rightmost is applied first: thus logsin(7/2) is zero.?
We do not require parentheses around function arguments; but note that sin /2
is zero, whereas sin(7/2) is one.

2Without higher-order functions, the reverse does not make sense anyway.
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Predicate calculation 23

In propositional formulae, the precedence is (highest) =, A, V, =, < (lowest).
There is no need for precedence rules of quantifiers, because they are always
written with enclosing parentheses (---) that give their scope.

2.8 Predicate calculation
2.8.1 Relations between formulae

The two (simple) formulae z = y = z # 2z and z = z = = # y are equivalent
in this sense: in every state they are both true or both false together. In general,
that two formulae A and B are equivalent is written A = B, and means

In every state, A is true if and only if B is true .

That is indeed the same as saying ‘in every state, A < B is true’. But there is an
important difference between = and <. The first is a relation between formulae:
A = B is a statement about A and B; it is not a formula itself. The second is
a propositional connective: A < B says nothing about formulae; rather it is a
formula itself.

Here are two other relations between formulae. The statement A = B means

In every state, if A is true then B is true .

That is the same as ‘in every state, A = B is true’. And the statement A & B
means

In every state, A is true if B is true .

It is the same as ‘in every state, B = A is true’. The relation = is known as
entailment.

Those three relations are used to set out chains of reasoning like this one: for
any formulae A, B, and C,

(A=C)V (B=C()

“writing implication as disjunction”
(nAVC)V (-BVC)

“associativity, commutativity of V”
(nAV-B)V(CVC()

“de Morgan, idempotence of V”
“(AAB)VC

“writing disjunction as implication”

AANB=C.
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24 The predicate calculus

Each formula is related to the one before it by the relation =, =, or &. And each
step between formulae carries a decoration, a ‘hint’, suggesting why it is valid. The
quotes “” separate the hints from the proof itself. They are not part of the proof;
they are about the proof.

The relation = is transitive, which means that whenever both A = B and B=C
(which we can write A = B = C), then we have A = C too. That is why the chain
of equivalences above establishes overall that the first formula is equivalent to the
last:

A=C)v(B=C) = AAB=C.

The other relations = and < are transitive as well, but not if mixed together.
Either can be mixed with =, however; thus from A = B = C we still have A = C.
Finally, writing just = A on its own means that A is true in every state.

2.8.2 Laws for calculation

To reason as above requires some knowledge of the laws to which one can appeal,
like “associativity, commutativity of V”’. Appendix A contains a collection of them.
Each can be used to justify steps in a calculation, and often there are several that
will do. One soon acquires favourites.

We do not present all those laws here; indeed, it will be some time before we need
many of them. Where helpful, however, we refer to them directly. The reasoning
above proved Predicate law A.36; here it is again, by numbers:

(A=C)Vv(B=2C)
“Predicate law A.22”
(nAVC)V (-BVC()
“Predicate laws A.3, A.5”
(nAV-B)V(CVC()
“Predicate laws A.18, A.1”
-(AAB)VC

“Predicate law A.22”
ANB=C.

Note the use of equivalence to replace a part of a formula, leading to an equiv-
alence for the whole formula. That is the usual rule in mathematics: we can
substitute equals for equals. But some of our laws are entailments =, not equiva-
lences; their substitution within formulae leads either to overall entailment or to its
converse <. Entailment distributes through quantification, conjunction, disjunc-
tion, and the consequent of implication; it is reversed in negations and antecedents
of implications. It does not distribute at all through equivalence <.

Here is an example of distribution. Suppose we have A = A', B & B', and
C =(C'. Then we can proceed as follows:
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(A= B)=C
= “since A= A7

(A'=B)=C
= “since B&B'”
(A'=B)=C
“since C =C'”
(A'=B)=C".

2.9 Exercises

Ex. 2.1 Which of these are terms?

1. true

2. 17

3. log”
4. loglogx
5. (logx)?
6. log 22
7. 2x
8.z <z +1

Ex. 2.2 Write terms for the following:

1. The square root of the factorial of n.
2. The factorial of the square root of n.

Ex. 2.3 O Which of these are propositional formulae?

true

true

true
r<y=2z
r<yY=z
r<y=>y<z
r<y=9y<z

N Ot W

Ezx. 2. Assuming that all variables denote natural numbers, which of these
propositional formulae are true in all states?

z>0
r<y=r+1<y
r<yvVy<z
t<yANy<z=1=y
T<YNy<zrz=x=y

Ol W=
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26  The predicate calculus

6. c<yANy<zc=zc#y
T s<yVy<zc=z#y

Ezx. 2.5 Q Assuming that the one-place predicates even, odd mean ‘is an even
number’; ‘is an odd number’ respectively, write general formulae for the following:

Every integer is either even or odd.

Every odd natural number is one more than some even natural number.
There is an even integer that is not one more than any odd natural number.
Zero is the least natural number.

There is no least integer.

Given any positive real number, there is another real number strictly between
it and zero.

SEENAN S S

Ez. 2.6 O Recall that (3z - .A) means ‘there is at least one z such that A’
Write another formula that means ‘there is at most one z such that A’.

Ez. 2.7  (Recall Exercise 2.6.) Write a formula that means ‘there is ezactly one
z such that A’

Ex. 2.8 O Use the truth tables of Figure 2.3 to show that these formulae are
true in all states:

1. A= (B=A)
2. A= B=0C)=(A=8B)=(A=10))
3. (A= -B)= (B=A)

Fr. 2.9 O  Show that A = B = A. Hint: Recall Exercise 2.8, and the meaning
of =.

Ex. 2.10 O Prove this, using laws from Appendix A:
Fz-(A=>B)A(—A=C)=Fz- AANB)V (Tz--AAC).
Ex. 2.11 Suppose N contains no free z. Prove this:
Fz- W=AWA(-N=B)=WN=Fz-A)A(-N = (Fz-B)).
Hint: Recall Exercise 2.10.
FEr. 2.12 Q  Prove this, for any formula A:
Fa-(Vb-A) = (Vb-(Fa-A).
Is the converse true?

Ez. 2.13  Show that (3z,y-z#y)=Vz-(Jy-z#y)). Hint: To show A =
B, show A= B = A.

© Carroll Morgan 1990, 1994, 1998



Chapter 3

Assignment and sequential
composition

3.1 Introduction

In Chapter 1 we saw that code is a sub-language in which we write programs
that are executable by computer directly. All conventional computer programming
languages are examples of code, because all of them were designed to be executed
by computers. At least part of our language, however, was designed for program
development: and so we must be explicit about which part of it is code, and which
is not.

Our code will be written in a language that includes assignment, sequential
composition, alternation, iteration and recursion. All of those have more or less
their conventional meaning, but we do not explain them only in the conventional
way.

Each executable construct is introduced in two ways: informally, as an operation
on some computer; and formally, as a refinement of some specification. The first
may aid the intuition, but is not essential for program development. Nor is it
sufficient. The second way is essential for program development, however, because
only that defines precisely how to reach code from specifications.

In this chapter we meet our first examples of code: assignment, and sequential
composition. Others will follow in succeeding chapters.

3.2 Assignment

Informally, an assignment changes a single variable, leaving all others unchanged.
An expression F is evaluated in the initial state; then in the final state, a variable
w is newly mapped to that value, irrespective of its mapping in the initial state.
(The initial value of the variable is lost.) Such assignments are written

w:=~F,
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28  Assignment and sequential composition

r:=1 Assign 1 to z.
Ti=y Assign the (initial) value of y to .
r:=z+1 Assign the initial value of z + 1 to

x — that is, increment z.
z:=y x (z+y) A more complex expression.

Each of the above assignments takes any initial state that satisfies
z =0Ay =1 to a final state satisfying z =1 A y = 1, and changes no
variable other than z.

Figure 3.1 Simple assignments

and they are read ‘w gets E’. The expression E is built from any constants,
variables, and operators available to us; later we will be more explicit about which
they are. Figure 3.1 gives some examples of assignments.

A multiple assignment changes several variables at once. It is written

wOa"'awn::E07"'7En .

That command assigns Fy to wy, ---, and E, to w, simultaneously. (Assigning
FEy to wy first, and then later F, to w,, does not in general have the same effect.)
Figure 3.2 gives examples of multiple assignments. When discussing assignments in
general we use the simple form w: = F, and allow w and £ to be lists if appropriate.

We have already met the refinement law for assignment as assignment 1.3 in
Section 1.5.2 — think of that as a preview of this chapter. The law is based on the
observation that in an assignment w:= F, only w is changed; then post describes
the final state provided that post[w\FE] described the initial state.

Law assignment 1.3 shows that each of the assignments of Figure 3.1 refines the
specification

lr=0ANy=1,z=1Ay=1],

and similarly each of the multiple assignments of Figure 3.2 refines the specification
z,y: [t=0Ay=1,z=1Ay=0] .

In Figure 3.3 there are more examples of refinement to assignment.

© Carroll Morgan 1990, 1994, 1998



Open assignment 29

z,y:=1,0 Assign 1 to z and 0 to y.
T, Y=y, T Swap z and y.

z,y:=x+y,x Xy Assign the initial value of z + y to =
and the initial value of z X y to y.

Each of the above assignments takes any initial state that satisfies
z =0Ay =1 to a final state satisfying - =1 A y = 0, and changes no
variables other than z and y.

Figure 3.2 Multiple assignments

3.3 Open assignment

A slightly mysterious-looking form of (multiple) assignment, but one that we shall
find useful later, assigns any value whatever: the command w,z:=F,? assigns £
to w but leaves open the value that will be assigned to . For that reason we call it
open assignment. (We assume as usual that w and z are disjoint lists of variables.)

Open assignment is used mainly in specifying desired behaviour — although it is
code, in fact — because it is a convenient way of writing ‘and z may be changed’.
Thus the assignment r,s:=4/s,7 is a command that sets r to the square root
of the value found initially in s, and may change s in the process. Similarly, the
command z, y,t: =y, z,? swaps the values of z and y using (possibly) a temporary
variable ¢ along the way.

The refinement rule for open assignment simply allows the ‘?” to be replaced by
any expression:

Law 3.1 open assignment For any expression F',

w,r:=E,7 C w,z:=EF.
O

The command choose z from Chapter 1 is a special case of open assignment, in
which the list w is empty: we could just as well write z:="7 .

3.4 The skip command

Another unusual command is skip, which does nothing: its final state is exactly the
same as its initial state. (It was mentioned in Section 1.9.) It can also be regarded
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30  Assignment and sequential composition

T [z =1]

"1
S
I
—_

1'7?/[1':X/\?/:Y7$:Y/\?/:X] C z,y:=y,2z
rly#0,z=1/y] C z:=1/y

z: [false , z = 0] 17

Ir1
8
I

Figure 3.3 Refinement to assignment

as a degenerate assignment, in which the list of changed variables is empty. (It can
even be considered to be an assignment of variables to themselves, as in z:=1z.)
Its refinement law is as follows:

Law 3.2 skip command If pre = post, then

w: [pre , post] C  skip .
O

We shall see later that skip is a useful command in spite of its doing ‘nothing’.
(After all, the same holds for ‘0’.)

3.5 Sequential composition

So far, we have the atomic programs specification, assignment and skip. The latter
two are code; the first is not. But they are all called atomic because they are not
formed from still smaller programs: instead, they cannot be broken down any fur-
ther. Viewing a large program from the bottom up, one first sees atomic programs
put together to make compound programs. Then those compound programs are
themselves put together to form larger compound programs, and so on.

Sequential composition, which we met in Section 1.6, is one way of putting pro-
grams together. Informally, the sequential composition of two programs progl and
prog2 is a new program which ‘first does progl and then does prog2’. It is written
progl ; prog2, and operationally one thinks of ‘control flowing from left to right’.
Figure 3.4 gives examples of sequential compositions.

Sequential composition is an operator which, like addition of numbers for ex-
ample, is written between its operands. We include it in this chapter on code
because it is executable in the sense that if progl and prog2 are executable, then
progl; prog2 is as well — first progl is executed, then prog2.

In using a law for sequential composition, rather than informal reasoning, we are
adopting a top-down view instead of bottom-up. A single specification is refined by
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Sequential composition 31

z:=0; z:=1 Assign 0 to z, then assign 1 to z.

r:=1; y:=x Assign 1 to z, then assign that
(new) value of z to y.

r:=y; y:=uxz Assign the initial value of y to =z,
then assign that (new) value to y.

y:=y; z:=y Assign y to itself (no change), then
assign that (same) value to z.

Each of these programs takes any initial state that satisfies x = 0Ay =1
to a final state satisfying z =1 Ay = 1.

Figure 3.4 Sequential composition

the sequential composition of two others; and they, in turn, are refined by others
still. Here is the law:

Law 8.3 sequential composition For any' formula mid,

w: [pre , post] T w:[pre, mid]; w: [mid , post] .
(I

The intuition operating here is that one way of reaching a final state satisfying post
from an initial state satisfying pre is to proceed in two stages, via an intermediate
state satisfying mad.

The intermediate mid can be any formula whatever: if it is strong (tending to
false), then the first component in Law 3.3 is hard to refine subsequently, but the
second is easy. If mid is weak (tending to true), then the reverse is the case. But
any choice of mid is allowed, even true and false themselves. Figure 3.5 gives an
example of Law 3.3; the resulting program hierarchy is shown in Figure 3.6.

For sequential composition with skip specifically, we have the following law:

Law 3.4 skip composition For any program prog,

prog; skip = skip; prog = prog .
(Il

Note that the three programs are equal: each refines both of the others.

!Neither mid nor post, however, may contain the so-called ‘initial variables’ that are the
subject of Chapter 8 to come. That does not at all concern us now, but must be remembered
if ever referring to this law later, once they have been introduced. Law B.2 on page 275 is the
most appropriate replacement for the more general case.
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32  Assignment and sequential composition

r,y: [t =0Ay=1]
C “sequential composition 3.3”

z,y: [z =0];
r,y:[z=0, z=0Ay=1].

We could refine each of those further with assignment 1.3, as follows:

z,y: [t =0 C z:=0
r,y:[x=0,z=0Ay=1 C y:=1.

Figure 3.5 Example of sequential composition 3.3

3.6 Assignment and composition together

As our programming repertoire increases, we will find many other opportunities for
laws that combine several constructions. One such is this special case of assignment
1.3 and sequential composition 3.3, which is useful when one ‘knows’ that a certain
assignment is likely to be appropriate in the final code:

Law 3.5 following assignment For any term F,

T , post]
T

[pre
C : [pre , post[z\E]];
E .

8 g g

O

What is left after applying Law 3.5 is a specification for the first half of the com-
position, which must be further developed; the assignment in the second half is
code already.

Note that Law 3.5 allows any assignment in its second half provided the changed
variables lie within the frame of the original specification. The required first half,
on the other hand, is calculated by the law. (Ridiculous choices for the assignment
in the second half probably lead to infeasible specifications in the first half — but
that does not affect the validity of the step.) The laws sequential composition 8.4
and leading assignment 8.5 (both still to come) allow similar calculations.

3.7 Example: Swapping variables
We illustrate the laws so far by showing, in full, the development of the program
which swaps z and y. (Note that the specification below allows the variable ¢ to

be changed as well.)
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Example: Swapping variables 33

client

z,y: [t =0Ay =1]

programmer
client
z: [z = 0]
programmer programmer
client client
z:=0 y:=1
computer

Figure 3.6 A programming hierarchy: recall Figure 1.1.

If the symbol < marks part of a program, then that part alone is next refined,
with the rest of the program assumed to be carried forward around it. Decorations
in quotes are hints, referring to the law(s) that justify the refinement step:

r,y,tlt=XANy=Y , z=Y ANy =X]

C “following assignment 3.5”
r,y,tlt=XANy=Y , t=Y ANy=X]|; N
=1
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34 Assignment and sequential composition

C “following assignment 3.5”

r,y,t:[t=XANy=Y , t=Y ANz =X]|; <
y:=zx

C “assignment 1.3”
t:=y .

Overall, the above development is summarised

r,y,t:[t=XANy=Y , z2=Y Ay =X]
Cii=y; y:=z; z:=1.

It is the standard swap via a temporary variable.

3.8 Exercises

Ex. 3.1 Use assignment 1.3 to show that each of the assignments of Figure 3.1
refines the specification

z=0Ny=1,z=1Ay=1].

Do the same for Figure 3.2, using the specification
r,y: [t=0Ay=1,z=1Ay=0].

FEz. 3.2  Prove the refinements of Figure 3.3.

Ez. 3.3 O Fillin the details of this refinement, using sequential composition 3.3:
x: [a::X,x:X4 C z:=2z% z:=22.

Ezx. 3.4 Use assignment 1.3 to derive a law specifically for the assignment
w:=w. Comment on its similarity to skip command 3.2.

Ezx. 3.5 Refine the following specification to a sequential composition of two
assignments, neither of which uses the operation ‘raise to the fourth power’:

z,y: [IZZQAy:z4

FEz. 3.6 O  Redo the example of Section 3.7 without using following assignment
3.5: use sequential composition 3.3 directly.
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FEzxercises 35

FEz. 3.7 0 A leading assignment law for multiple assignments is the following:

Law 3.6 leading assignment For disjoint w and «,

w,z:=FE, Flw\E] = w:=E; z:=F .
a
Note that as a special case we have
w,x:=FKEF = w:=FE; v:=F,

provided F' contains no w.
Use Laws 3.1 and 3.6 to show that

z,y,t:=y,z,?7 C t:=y, y:=z;, z:=1.

FEz. 3.8 O Use sequential composition 3.3 to prove following assignment 3.5.
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Chapter 4

Alternation

4.1 Operational description

Alternations (sometimes called ‘if statements’) can informally be said to implement
a case analysis: based on the initial state, one of several possible commands is
selected for execution. They are built from guarded commands, each comprising
a guard and an associated program called the command. A guard is a formula
which selects those states to which its associated command applies. The guarded
command itself is written

G — prog ,

and it is pronounced ‘G then prog’; the guard is G and the command is prog.

An alternation is a collection of guarded commands grouped together. They
are separated by the symbol || (pronounced ‘else’) and enclosed in the alternation
brackets if and fi. Here is an example:

if Gy — progy
[ Gy — prog

[ Gn— progy
fi.

We also write the above as if ([Ji- G; — prog;) fi, with the limits 0 and n understood
from context.

The case analysis occurs in this way. In the initial state, none, one, or several
of the guards G; will be true. If exactly one is true, its corresponding command is
executed.

If several guards are true, then one of them is selected and its corresponding
command is executed. If the alternation has been properly developed, it will not
matter which of the several guards is chosen — and one can make no assumptions
about which it will be.
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Refinement law 37

If no guard is true, the alternation aborts: in that case it can do anything, and
one may assume that ‘anything’ means ‘something bad’. (Recall the discussion of
abort in Section 1.9.) That is not usually the programmer’s intention (unless it
was the client’s too); a proper development will avoid it.

Consider this alternation for calculating the maximum m of two integers a and
b:

ifa>b—o>m:—a
| b>a—>m:=b
fi.

There are two cases — they are a > b and b > a — and they overlap. Together,
they cover all possibilities, thus avoiding abort. Whenever a > b, the first com-
mand is executed; whenever b > a, the second is executed. If a = b, then either
can be executed, and of course in this alternation it makes no difference which.
(Since the problem is symmetric, it is especially appropriate to have a symmetric
solution.)

As a second example, consider

if2|zsz:=z+2
| 3|z —>2z:=2+3
fi.

The formula ‘2 | 2’ means ‘2 divides z exactly’. If z is initially 2, then finally it
will be 1; if initially 3, then the result is the same (but by different means!) If
initially z is 6, then finally it could be either 2 or 3, and we cannot predict which.
And if initially 7, finally it could be 17... or 289, or nothing at all (because of
nontermination).

4.2 Refinement law

Since we deal with the general case, any number of guarded commands, we intro-
duce a notation for the disjunction of all their guards. The name GG abbreviates
the formula

GovVG V-V G,
in the following refinement law:
Law /.1 alternation If pre = GG, then

w: [pre , post]
Cif ([ i+ Gy — w: [G; A pre , post]) fi .
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38 Alternation

The precondition of the specification ensures that at least one guard is true; and
each command assumes additionally in its precondition the truth of its guard.

Now let us reconsider the maximum-finding program. Using the binary operator
L for mazimum, we begin

m:=allb

= “simple specification 1.7”
m: [m = a U b]

C “alternation 4.17

ifa>b—>m:la>b, m=alb] (i)
l b>a—m:[b>a, m=alld] (ii)
fi.

Note that each command has in its precondition the corresponding guard.

The numbering (i) and (ii) is to allow those commands to be refined separately
below. As with < (a special case), the context is carried forward, and the code
can be collected at the end. Continuing, we use assignment 1.3 to refine each
command:

(i)
(ii)

The resulting program is as shown earlier.

It is deliberate that alternation has no provision for defaults; each case must
be explicitly mentioned. If in some case there is ‘nothing to do’ — because the
initial state will serve as the final state — then skip is the appropriate command.
Consider this development:

a
b .

m:
m:

RN

m:=aqlblUec

C “simple specification 1.7; sequential composition 3.3”
m:= a;
m:m=a, m=alblUc| q
C “sequential composition 3.3”
m:m=a, m=albl; (i)
m:m=alb, m=alblc] (ii)
(i) C “alternation 4.1”
ifm<b—omm=arAm<b, m=albd] (iii)
| m>b—sm:m=aAm>b, m=allb] (iv)
fi
(iii) E m:=b
(iv) C skip
i) Cifm<c—om:=c]]m>c—skipfi.

The resulting code, collected from the derivation above, is
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m:=a;
if m<b—m:=b]m>0b— skip fi;
ifm<c—om:=c|m>c—skipfi.
If we abbreviate if G — prog | -G — skip fi by
if G then prog fi ,
then we can write the above
m:=a;

if m < b then m:=0 fi;
if m <cthenm:=cfi.

4.3 Exercises
Ex. /.1 ©  Assuming that z and y are real numbers, refine
xr:=absy

to an alternation, thence to code.

Ex. /.2 Assume that z and y are real numbers, and supposing that |/ takes
reals to reals and always terminates, refine this to code:

y: [xZO:H/Z:x}.
You may use 4/ in expressions.

Ezx. /.3 Mortgage Let ¢, s, b, m be respectively the cost of a house, savings in
the bank, borrowing limit, and mortgage granted; they are all integers. Specify
using maximum L and minimum M a program that determines m in terms of ¢, s, b.
Then refine that program to code in which LI and M do not appear.

Ex. /., O  Prove alternation 4.1 from this law:

Law 4.2 alternation

{(Vi-Gi)} prog
=if (i G — {G;} prog) fi .
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Ezx. /.5 Sometimes one wants to refine one alternation to another, simply re-
arranging the guards. The following law can be used for that:

Law 4.3 alternation guards Let GG mean Gy V ---V G,, and HH
similarly. Then provided

1. GG = HH, and

2. GG = (H; = G;) for each i separately,

this refinement is valid:
if (Ji-Gi —prog)) i C  if (] i-H; — prog;) fi .
a
Use Law 4.3 to show that the second example of Section 4.1 can be refined to
if2|zthenz:=z+2elsez:=z+31i.
where if G then progl else prog2 fi abbreviates

if G — progl
| =G — prog2
fi.

Does that mean that we can write our nondeterministic alternations in the pro-
gramming language C7
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Chapter 5

Iteration

5.1 Operational description

[terations (sometimes called ‘while loops’) implement repetition: typically a com-
mand is executed repeatedly while a certain condition holds. In their general form
iterations are, like alternations, built from guarded commands. We write them as
follows:

do Gy — progy
[ Gy — prog

| G, — prog,
od .

We can also write do ([Ji - G; — prog;) od.

The repetition occurs in this way. In the initial state, none, one, or several
guards will be true. If none is true, the command terminates successfully and the
state is unchanged. (Note the difference from alternation, which aborts in that
case.)

If one or several guards are true, just one is chosen and its corresponding com-
mand is executed. Then the process is repeated, beginning with a re-evaluation of
all the guards.

It is possible (but usually undesirable) for iterations to repeat forever. From
the above, we see that they terminate only when all guards are false; thus as an
extreme example (of the opposite)

do true — skip od

never terminates. By convention, a never-ending iteration is equivalent to abort.
Successful iterations finally make all their guards false, and that may occur from
some initial states but not others. Consider the following program, which for
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natural number n establishes n = 1 finally whenever n is a power of 2 initially:
do2|n—n:=n+2od. (5.1)

If n is not a power of two initially, then we are not assured of n = 1 finally: starting
with n = 12 for example would lead via n = 6 to n = 3, where the iteration would
terminate successfully because 2 does not divide 3 exactly. And if n = 0 initially,
there is no finally: variable n is set and reset to 0 forever.

Even from our informal view, we see that an iteration can be unfolded without
affecting its meaning:

do G — prog od
= if G then
prog;
do G — prog od
fi.

Each unfolding makes one more repetition explicit. Thus we can unfold again. . .

= if G then
prog;
if G then
prog;
do G — prog od
fi
fi.

...any number of times, and that shows that an iteration can be regarded as
equivalent to an unbounded nesting of alternations.

5.2 Refinement law: informally

Rather than unfolding as above, we rely instead on a refinement law that abstracts
from the number of repetitions: it is all captured in a single formula, the invari-
ant. An inwvariant for an iteration is a formula which, if true initially, is true also
after every repetition including the final one. Overall, the iteration maintains the
invariant, and establishes additionally the negation of the guards — provided it
terminates at all. And that is true no matter how many repetitions occur (even
0).

For an example we return to Program (5.1), defining a predicate pt to mean ‘is
a power of 2"

ptn = (EIk:N-n:2k).
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The formula ptn is an invariant for the iteration: if it is true initially, and a
repetition occurs (because 2 | n is true also), then after execution of the iteration
body n:=mn + 2 it is true still. Another way of writing that is

n:[2|nAptn, ptn] C n:=n-+2. (5.2)
In general, a formula ¢nv is an invariant of do G — prog od if for some frame w
w: [G ANinv , inv] T prog . (5.3)

That is, if the guard G holds, then the iteration body prog preserves the invariant
mnu.

The utility of an invariant is that, assuming termination, its preservation as in
(5.3) is sufficient to establish

w: [inv , inv A-G] C do G — prog od . (5.4)

And in (5.4) we have the essence of our refinement law, which will allow us to
replace a specification by an iteration. As an example, we derive (5.1) from the
informal specification given earlier:

n: [ptn, n=1]

C “l is the only power of 2 not divisible by 2”
n: [ptn, ptnA=(2]n)]

C “(5.4), justified by (5.2) in this case”
do2|n—n:=n-+2od.

Our refinement rule ‘if (5.3) then (5.4)" is not yet complete, however: in fact if
used in that form it would produce ‘refinements’ that were invalid. That is because
(an extreme case) we could reason

skip
do true — skip od .

because w: [true A true , true] C
we ‘conclude’ w: [true , true Afalse] C

Put more starkly, we would be claiming that

because choose w [C skip
we ‘conclude’ magic [C do true — skip od .

That is clearly nonsense: the premise is true, but the conclusion is false.

What we are missing is the idea of termination: that the iteration body not only
maintains the invariant but cannot be executed indefinitely. For that we need a
variant function.
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5.3 Termination of iterations: variants

In the example, termination is guaranteed informally by the following observation:

Each repetition of n:=mn 2, when 2 | n, strictly decreases the integer
n; yet n cannot become negative.

We say therefore that the variant of the iteration is n. In general, some integer-
valued! variant expression is chosen that is strictly decreased by each repetition,
but never below some fixed lower bound (often chosen to be 0).

5.3.1 Specifying decrease of the variant

We have no difficulty writing a command that decreases an integer-valued variable
n — the assignment n:=mn —1 is one of many that would do — but to specify that
n is strictly decreased is another story. Writing

n:[n=n-1],

or more generally n: [n < n], would not do: both of them are equivalent to magic.

We adopt a convention that 0-subscripted variables in a postcondition refer to
the initial (rather than to the final) values of the variables. With that, the above
discussion could be summarised

n:n<nl C n:=n-—1. (5.5)

That is, the assignment n:=n —1 (the more refined side) is just one of many ways
of strictly decreasing n (expressed by the specification on the left-hand side).

We will meet initial variables in more generality shortly. For now we re-examine
just three of our earlier laws, generalising them to take initial variables into account.
They become

Law 5.1 strengthen postcondition If pre[w\wp] A post’ = post, then

w: [pre , post] £ w: [pre, post’] .
(Il

Law 5.1 strictly generalises our earlier strengthen postcondition 1.1 in that the
precondition of the left-hand side can now be taken into account.

Law 5.2 assignment If (w = wy) A (z = 1p) A pre = post[w\E], then
w,z: [pre , post] C w:=FE.

O

!More general variants are possible; they range over well-founded sets.
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Law 5.2 generalises our earlier assignment 1.3. Notice that the substitution [w\E]
affects only ‘final’ (unsubscripted) variables in the postcondition.

Law 5.3 skip command If (w = wp) A pre = post, then

w: [pre , post] C  skip.

O

Law 5.3 generalises skip command 3.2, taking advantage of the fact that in a skip
command the initial and final variables have the same value.

Each of the above reduces to its earlier version if initial variables are not present,
and the earlier versions remain valid even when initial variables are present — but
they are not as powerful as the newer versions.

Using our new assignment 5.2 we can show Refinement (5.5) in just one step:

n: [n < np
C “n=mngAtrue = (n <mng)[n\n—1)
n:=n-—1.

Simplified, the proviso would be simply n = ng = n — 1 < ny.

5.3.2 Imitial variables and the frame

We should also mention at this point an interaction between initial variables (values
before any change) and the frame (listing which variables may be changed). If a
variable z is not in the frame, then z and z; may be used interchangeably in the
postcondition since the initial and final values of z are equal in that case. Put
another way, if we remove z from the frame, then we can replace zy by z in the
postcondition. That is summarised in the following law:

Law 5./ contract frame

w,z: [pre , post] T w: [pre, post[n\z]] .
|

Note that zy need not occur in post for Law 5.4 to apply — and that means, as a
special case, that simply removing a variable from the frame is a refinement too.
(Recall Exercise 1.7.)

That concludes our look at initial variables; we return to them in Chapter 8.
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5.4 The refinement rule for iteration

With initial variables available for specifying the decrease of the variant, we can
now give the full refinement rule. It is

Law 5.5 iteration Let inv, the invariant, be any formula; let V, the variant, be
any integer-valued expression. Then if GG is the disjunction of the guards,

w: [inv , inv A ~GG]
Cdo(i-G; = w:[invAG;, invA(0<V < V)] od.

Neither ¢nv nor G; may contain initial variables. The expression V is V]w\wp].
O

In the interests of keeping the amount we must write to a minimum, we introduce
an abbreviation that avoids writing inv twice in the iteration body. When a formula
appears in both the pre- and the postcondition of a specification (as inv does in
the iteration body above), it can instead be written once in between, as a third
formula:

Abbreviation 5.6 specification invariant Provided inv contains no initial variables,

w: [pre , inv , post] = w: [pre Ainv , inv A post] .
(Il

The iteration body in Law 5.5 can now be written (more briefly as) just
w: [G;, inv, 0<V < V] .

Figure 5.1 gives a complete development of Program (5.1), including the variant.
In the simplified proviso we have used n = ng on the left-hand side to replace ngy
by n on the right.

5.5 The iteration ‘checklist’

In planning one’s approach to developing an iteration, it is sometimes useful to
consider the following characteristics of iterations that are built in to the iteration
law:

The invariant holds initially.

The invariant and negated guard are sufficient to establish the desired result.
The iteration body maintains the invariant provided the guard holds as well.
The variant is strictly decreased by execution of the iteration body, provided
the invariant and guard hold.

5. The variant cannot be decreased below 0 by the iteration body, provided the
invariant and guard hold.

=N
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n: [ptn, n=1]

C n:lptn, ptnA—=(2]n)]
Cdo2|n—
n:[2|n, ptn, 0<n < n q
od
C “2|nAptn = pt(n+2)A0<n+2<n”
n:=n-=+2.

Figure 5.1 Example iteration development

Characteristic 1 is found in the precondition of the specification on the left-hand
side: by ‘- --[inv,---" we express that the invariant must hold initially. Similarly,
Characteristic 2 is found in the postcondition: writing - - -, inv A =GG] - - - states
what is required of the iteration.

In ‘- -[G; Ainv, inv A - - of the iteration body is found Characteristic 3; Char-
acteristic 4 is expressed by ‘- --[G; Ainv,--- V < Vi)', and finally Characteristic 5
is given by -+ [G; Ainv,---0 < V.-

When choosing an invariant it is sometimes helpful to run through the checklist?
informally, before setting out the development in full — one is then (literally)
carrying out a feasibility study.

5.6 Exercises

Ex. 5.1 Give a single assignment command that refines
n: [ptn, n=1].

Ezx. 5.2 Q Checking for powers of two Use the invariant n # 0 A (pt N < ptn)
to complete the following development, in which N is used to hold the original
value of n:

n:n#0An=N, n=1< ptN]
Cn:[n#OA(ptN & ptn), (ptN < ptn) A=(2]n)]

Hint: You have seen the code before.

Ezx. 5.3 Q Consider this factorial program, in which we assume f and n are
integers. What laws are used for the first refinement step (shown)? (The constant
F is used to refer to the desired factorial value.)

2Tt is borrowed from [Gri81].
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f,n:[F=n!,f=F]
C f:[F=n!, fxnl=F] (i)
[rnfxnl=F, fxnl=FAn=0]. (ii)

Complete the refinement to code.

Ex. 5.4 Q The law strengthen postcondition 5.1 is stronger than strengthen
postcondition 1.1 because it uses information from the precondition. Assuming
z,y : R, use it to show that

y:[0<2 <9, y* =1
Cy0<z=y*=1z].

Explain the fact that the law is called ‘strengthen postcondition’, yet above the
new postcondition is weaker than the old.

FEz. 5.5 O  Assuming z,y : R, prove each of the following:

ly>z, x> Cri=y

[z <0, > Cr:=—z

T,y lr=ywAy=n|Cc,y:=y,z

jr=X+1,z=X+2]Cz:=z+1

rr=X+1,=X+2|Cz: [z =01 +1]
T [x = 19 + 2]

AR A

C ooz =mx+1];
oz =2 +1] .

FEz. 5.6 O  Design an initialised iteration law of this form:

w: [pre , inv A G|
L progl;
do G — prog2 od .

You should supply progl and prog2, as specifications, and you may assume that
inv and G contain no initial variables.

Ex. 5.7 Logarithm Here is a specification of a logarithm-finding program, in
which [, n and N are integers:

l,n: [1§n:N, 2L < N < 2H!

Variable N holds the initial value of n. Develop the specification to code using the
invariant

nx2'< N<(n+1)x2'A1<n.

© Carroll Morgan 1990, 1994, 1998



FEzxercises 49

Ex. 5.8 Q Handing out sweets Suppose S sweets are to be handed out to C
children. If C divides S exactly, then each child should receive S/C (whole!)
sweets. But if the division is not exact, then some will receive |S/C| and others
[S/C], where | | and [ | are the floor and ceiling functions that take a real number
to the closest integer no more than and no less than it respectively.

Here is a program for handing out the sweets, using natural number variables s,
c and ¢:

s,c:=8,0;

do ¢c#0—
t: [ [s/e] <t <Ts/cl];
‘hand out t sweets to the next child’;
s,c:=8—1t,c—1

od .

We say the handing out is fair if

all the sweets are handed out; and (5.6)
each child receives between |S/C| and [S/C'| sweets. (5.7)

Does the program implement a fair handing out?
Hint: Use informal invariant-based reasoning, following the checklist of Section
5.5; consider an invariant resembling?

15/C] < [s/c] (5.8)
[s/c] < [5/C]

S = s + ‘the number of sweets handed out already’ . (5.10)

Useful facts about | | and | | are that for all integers 7 and reals r

7]

0
and [r] <

IN

1<
r<i.

3You may have to alter it slightly. ..
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Chapter 6

Types and declarations

6.1 Types

The only types we have met so far are various numbers, like the reals R, the integers
Z and the natural numbers N. They are examples that we borrow directly from
mathematics, more or less taking their existence for granted. Figure 6.1 gives other
examples of standard mathematical types; but in general we can use any set as a
type.

In code, however, the available types are restricted. We make the (idealised) as-
sumption that types N and Z, at least, are available in code, with the intention that
they correspond roughly to types INTEGER or int in some everyday programming
language. Other types can be constructed from them, as we will see in Chapters 9
and 15. The empty type {} is not code, however.

Every type brings with it certain functions and relations which can be applied
to its elements. For the types of Figure 6.1 we may use all those from arithmetic,
some examples of which are given in Figures 6.2 and 6.3.

Why do we bother with types? They affect program development in several
ways. One way is that types provide information about the possible values that
variables can take, and the information can be used to make program development
easier. For example, the following refinement is not valid in general, but it is valid
if m and n are known to be natural numbers, elements of N:

n:m#0,0<n<m] C n[m>0,n<m.

The precondition has been weakened because m # 0 = m > 0 for any m in N.
The postcondition has been strengthened because n < m = 0 < n < m for any n
in N. (Actually the two programs are equal, which is a special case of refinement.)
Thus having the types declared means that the fact m, n € N is available anywhere
the usual scope rules allow, and we do not have to carry the information explicitly
from place to place.

Another way is that types restrict the values that can be assigned to variables,
and that makes program development harder: there are fewer assignments to

20
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N The natural numbers, or non-negative integers.
Z 'The integers, positive, negative, and zero.

Q The rational numbers.

R The real numbers.

C The complex numbers.

Each of the types is a proper subset of the one below it: thus N C Z C
Q c R c C. For any type T above except the complex numbers, we
write T for the set of positive elements of the type, and T~ for the
set of negative elements of the type. Thus Nt = Z* = {1,2,3,---},
and Z— ={-1,-2,-3,---}.

Figure 6.1 Some standard mathematical types

choose from. For example, the code m : = —1 should not occur in a program where
m has type N. That is partly because everyday languages have explicit typing,
which therefore we must accommodate.

6.2 Declarations
6.2.1 Variable declarations

To associate a type with a variable we use a variable declaration, and for variable
z and type T that is written var z : 7. We also have multiple declarations like
this:

var z,y: 1T; z: U .

It declares z and y to have type T, and 2z to have type U.

We have earlier met informal declarations, such as at the beginning of Chapter
1: ‘let our variables be just z, y, and z; and let their values be real numbers’ (p.4).
Now we could write that var z,y,z : R.

© Carroll Morgan 1990, 1994, 1998



52  Types and declarations

+ Addition.
— Subtraction.
X Multiplication. We allow the conventional 2n

to abbreviate 2 x n.

/ Division. Note that dividing two integers does
not necessarily yield an integer.

[ ] Ceiling: the least integer no less than.
| | Floor: the greatest integer no more than.
+ Integer division: a +~ b = |a/b].

o Natural number subtraction: a©b = a — b,
provided a — b > 0.

mod Modulus: ¢ = bx (a+b)+(amodb), provided

b #0.
abs  Absolute value.
L Maximum.
M Minimum.

Figure 6.2 Some standard arithmetic functions

Less than.

Less than or equal to.

Greater than.

Greater than or equal to.

Divides exactly: (a|b) = (b mod a = 0).

IV VIAA

Figure 6.3 Some standard arithmetic relations

6.2.2 Invariant declarations

A more advanced form of declaration is the local invariant: instead of writing
var z : N we could write

var z : Z; and z > 0 .
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We could also write just var z and z € N, using an untyped declaration of z.
A local invariant is any formula written after the keyword and, as a declaration.
The declaration

and inv

allows us subsequently to assume inwv, as well as any typing information, when
applying laws or definitions.

In fact the above examples make it clear that local invariants subsume types:
typing a variable just makes invariant that it is an element of its type.

We can write more interesting invariants too. The declaration and 2 | n means
that n must always be even. And we can relate different variables to each other;
for example, the following declares a rational ¢, and two integers n and d that
always represent it as a fraction:

var ¢: @ n:Z; d:N; and ¢ =n/d .

Finally, invariants can be used to make constants: given a type declaration g : R*,
the additional declaration and ¢g? — g — 1 = 0 makes ¢ the golden ratio 1.618- - -.
Unlike the conventional constant declaration (for example const g = 1.618), the
distinguishing property of ¢ is declared as well.

Unfortunately, local invariants are not code: they are useful during development,
but must at some stage be removed. We return to that later, in Section 6.6.

6.2.3 Logical constants

We have seen in some earlier exercises that it is sometimes useful to have a name,
not necessarily a normal program variable, that can be used to refer to values of
interest during a development (Exercises 5.2, 5.7 and 5.3). For example, although
it is easy enough to write the specification f, n:=n!,? for a program that sets f to
the factorial of n (possibly changing n), during the development one might need
an invariant along the lines of

n! x f = ‘the factorial of the initial value of n’.

Rewriting the specification as f,n: [F = n!, f = ny!] is a step in the right direc-
tion, since — as long as we do not change F' — we can now write the invariant
as

nlxf = F.

In fact, a slightly neater specification would be just f,n: [F =n!, f = F] (as in
Exercise 5.3).

But, strictly speaking, a precondition F' = n! means ‘abort if F' # n!’, and that
certainly is not what we want: we need F' to take a value such that the precondition
holds. In this case that value would be n! .
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That ‘taking a value such that the precondition holds’ is what logical constants
are for. Like variables, they are declared — but we indicate their different nature
with the keyword con: the notation

con F

declares F to be a logical constant, rather than a variable. (Since we declare logical
constants explicitly, we can use either upper or lower case for them — but upper
case is conventional.)

Unlike var, a logical constant declaration con is not code, and hence at some
later stage of refinement it must be removed. Naturally, that can occur only when
all references to those logical constants have been eliminated, since otherwise they
would become undeclared. And since logical constants are not code, typing for
them is optional.

Our specification above is thus to be interpreted in the context of the declarations
var f,n : N; con F. The development, incidentally, is then

fyn: [F=nl, f=F]
C “establish invariant”

=1
frn[F=nlxf, F=nlxfAn=0] q
C “Note we assume n > 0 because of its declaration.”
don#0—
fin:[n>0, F=nlxf, n<ng <
od
C “How do we know n stays non-negative?”
filn>0ANF=n!xf, F=(n—-1)!x/[f]; 4
n:=n-—1
C “And now the logical constant F' disappears, as it must.”
f:=fxn.

(What refinement rules were used in the above?)

6.3 Local blocks
6.3.1 Variables and invariants

Declarations of variables, invariants and logical constants are made within local
blocks, which indicate precisely the part of the program affected. A local block is a
program fragment enclosed in the block brackets |[ and ||; any of the declarations
of Section 6.2 may be placed immediately after the opening bracket. They are
separated from the following program, the block body, by a spot - .
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Declarations are limited in effect to the block in which they are declared; such
limitations are necessary, for example, whenever a programmer uses extra variables
not mentioned in the specification agreed with his client. The specification

r,y:lr=XANy=Y ,z=Y ANy=X],
which swaps the values of z and y, is not refined by
ti=z; z:=y; y:=t.

(Compare Section 3.7, where ¢ was in the frame.)
The specification does not allow ¢ to change, and so its implementation must
not either. We must use a local block, and a correct refinement is

[var t: T t:=z; z:=y; y:=t]|,

where T is the type of z and y. The variable ¢ is significant only within the local
block; it is wholly divorced from any variable ¢ declared outside the local block.
Its initial value is an arbitrary member of its type.

The names of local variables can be systematically altered throughout the block
in which they are declared — thus this program also swaps z and y:

[vars: T-s:=uz; z:=y; y:=s]|.

It is because of that essential arbitrariness in the name of a local variable that it
is clear it cannot have anything to do with variables declared outside the block.
In general examples like the above, we may omit types from declarations; in that
case, we assume all variables to have the same type.
Here is the law for introducing a local variable, and optionally a local invariant
as well:

Law 6.1 introduce local variable If £ does not occur in w, pre or post then

w: [pre , post] C |[var z: T;and inv-w,z: [pre , post] || .
O

It is the proviso of Law 6.1 — that z is ‘fresh’ — that ensures there is no
confusion between the ‘new’ z and any ‘existing’ z’s. Without it, a reference to an
existing x could be captured by the new declaration.

The invariant part of Law 6.1 is optional, of course, and is considered to be true
if omitted. Remember however that an invariant is not code, and so cannot appear
in the final program. (See Section 6.6.)

For laws like introduce local variable 6.1, which introduce a block, we can use an
abbreviation when setting out refinements: the declaration decorates the refine-
ment step, and the block brackets are omitted. We use the spot - again to separate
the decoration from the refined program. Thus we have this alternative layout of
the law:
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w: [pre , post]
C var z : T; and inv-
w, z: [pre , post].

The advantage of that is a more concise notation, no need for block brackets during
the development, and no indentation. (The block brackets are required only if we
collect the code and present it linearly: similarly ‘2 x (3 4+ 4)’ needs parentheses,
although expression trees do not contain them.)

6.3.2 Logical constants and blocks

Logical constants are introduced, in general, with this law:

Law 6.2 introduce logical constant If pre = (¢ : T - pre’), and ¢ does not occur
in w, pre or post, then

w: [pre , post]
Cconc:T-

w: [pre’ | post].

If the optional type T is omitted, then the quantification in the proviso should be
untyped.
(I

Note that we use the abbreviated layout, just as for var.
Later we shall see direct applications of Law 6.2; but more often we use this
more specialised law, an immediate consequence of it:

Law 6.3 fix initial value For any term E such that pre = FE € T, and fresh name
C7

w: [pre , post]
Cconc:T-

w: [pre N ¢c=FE | post].
Proof: Law 6.2 requires

pre
= preANEeT

“c fresh”

(pre A c € T)[c\E]|
“Predicate law A.56”
(Fe-prence TANe=E)
(Fe:T-preANc=E) .
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Law 6.3 is used when it is necessary later in a development to refer to the value that
some term E had initially, where the constituent variables of £ may be changed
by assignments; the logical constant ¢ retains that initial value. Returning to our
factorial example above, we could start from f, n: [f = ny!], and use fiz initial value
6.3 to introduce F', as follows:

C f,n: [f = nol]

C con F-
fyn: [F=nl, f=mn]

C “strengthen postcondition 5.17
fin:[F=nl, f=F].

In practice, of course, we would not dream of setting out all that detail: it would be
sufficient to go from f,n: [f = ng!] (or even fon:=nl,?) to f,n: [F=n!, f=F]
in one step directly, quoting ‘con F’ as the justification.

Finally, for removing logical constants, we have this law:

Law 6./ remove logical constant If ¢ occurs nowhere in program prog, then

|[con c¢: T-prog]| T prog.
|

Law 6.4 is the justification for removing declarations con ¢ when all occurrences of
¢ have been removed. We will not use it explicitly, however. (We could formulate
a similar law for variables, but since they are code it would be very seldom that
we would want to remove them.)

6.4 Using types and invariants
Within a local block such as
|[var z : T; and inv.--- ||,

the formula z € T A inv may be used when proving the provisos of refinement
rules. Within several nested blocks, all the enclosing formulae may be used. They
are known collectively as the context.

Thus in our original example,

n:m#0,0<n<m] C n[m>0,n<m,

we may use the context m,n € N. The provisos for the two refinements, weakening
the precondition and strengthening the postcondition, are then
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meNAmM#A0 = m>0
neENAn<m = 0<n<m.

Naturally we need not write in the whole context: only m € N was required in the
first case, and n € N in the second.
A slight difficulty arises if there is danger of variable capture, as in this example:

|[ var a,b : N-
[ var a : Z-

I
JI-

At the point - - -, in the inner block, we cannot refer to the context formula a € N,
because its free variable a would be captured by the inner declaration. One must
either rename the inner bound variable, or use only the weaker b € N from the
outer declaration. In general, we can always use a weaker context than the one we
are given, and that allows us to use a € ZA b € N, for example, in the inner block.

6.5 A final note on feasibility

With types and invariants now explicit, and initial variables, we can present a more
general definition of feasibility that takes them all into account. It is

Definition 6.5 feasibility The specification w: [pre , post] is feasible in context inv
iff

(w=wy) Apre Ninv = (Jw: T -inv A post),

where T is the type of w.
a

As an example, recall that we have seen that the specification
v [y =] (61

is infeasible if z,y range over R: the formula (3y: R-y? = z) is not true for all
z in R. But if z, y had type C, the feasibility formula from Definition 6.5 would
reduce to z € C= (Fy : C- y? = z) instead, quite a different matter.

6.6 Checking types and invariants
Section 6.4 explained the use of context in checking the provisos of refinements,
and how that makes proposed refinements more likely to be valid. But there is

a price to pay: at some stage we must check that those types are respected and
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invariants maintained. We call that activity type checking, and say that a program
successfully checked is well-typed. If it fails the check, we call it ill-typed.

Experience suggests that type checking is best done at the end of development,
rather than during it. Often it is obvious that a program is well-typed; and if types
are used in a reasonable way, much of type checking can be done automatically by
computer.

We must type-check both types and invariants; we deal first with types. Only
assignments can violate types, and so we must be able to tell whether any assign-
ment is well- or ill-typed. In an assignment w:= F, we always know the type of w
because that is given in its declaration. We arrange, as explained below, that we
always know a type for £ as well. If the type of w is T', and of E is U, then the
assignment is well-typed if U C T.

A type for any expression can be deduced provided we know the types of the
variables and constants that it contains, and provided the operators have certain
properties. For example, we know that the natural numbers are closed under
addition, and that 1 is a natural number; therefore we know that in a context
containing a¢ € N the expression a + 1 has type N. Therefore a:=a + 1 is well-
typed. The same applies to Z, Q, R, and C: the constant 1 is an element of them
all, and they all are closed under addition.

But type checking is not always so straightforward. Given m,n : N, consider
this refinement:

m:[n>0, m=n—-1 LC m:=n-—1L

Though the refinement is valid, the assignment is ill-typed, because n € N %
n —1 € N. Therefore we do not allow subtraction ‘=’ of natural numbers in
assignments.

For subtraction of natural numbers we use instead the operator &, which agrees
with ordinary subtraction ‘—’ as far as possible: 261 =2—-1=1. But 1 — 2 is
not a natural number, while 162 is a natural number (though we choose not to
know which one): therefore they cannot be equal. Still, in the situation above we
have this alternative refinement:

m:[n>0, m=n—-1 LC m:=nol.

It too is valid, and this time the resulting assignment is well-typed. The validity
rests on the proviso required by assignment 1.3, which for the above is

n>0 = nel=n-1.

That is true given our declaration m, n : N.

Operationally, one would argue that when n is 0 initially, and thus m:=no1
assigns an unknown natural number to m, the refinement still holds: the precon-
dition of the left-hand side is false.

Now we turn to the type-checking of local invariants. Recall that declarations
‘and inv’ are not code, and so must be removed once they have served their
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purpose (of providing extra context). There are general laws for that; but we do
not show them, because our use of invariants will be very modest. Either they
refer to variables that are never changed — that do not appear in any frame — or
we use operators that maintain them trivially. Under those strong conditions, they
can be removed without further checking; we draw attention to that as it arises
below (for example, on page 100).

6.7 Undefined expressions

Consider this refinement:
r: [z =1/0] C z:=1)0.

Since the specification terminates (precondition true), so must the assignment. Yet
that is not the conventional view. Usually, division by 0 is said to be ‘undefined’,
causing assignments like the above to abort.

But recall 162 from Section 6.6. It is defined, and is even a natural number;
but we do not know which one. Similarly, we say that 1/0 is a rational number,
but we do not know which one. The assignment z:=1/0 does terminate, but we
simply do not know what value of z results.

Our novel view simplifies program development considerably, but of course com-
plicates programming language implementations. We insist that divisions a/b
return a result in all circumstances; they cannot abort when 6 = 0. Thus in
programming languages without that property (that is, in most programming lan-
guages, regrettably), the command z:=a/b cannot be code on its own. Instead,
we would have to allow certain specifications as code; in this case, we would allow
only

z:[B#0, z=A/B|

or the equivalent {B # 0} z:=A/B (6:2)

for any variable z and expressions A and B over suitable types. Other partial
operators would be handled similarly. Adherence to the strict form could easily be
enforced by a compiler, a major part of which is dedicated to syntax checking in
any case. (See Exercises 9.15 and following for further discussion of undefinedness.)

6.8 Exercises

Ezx. 6.1 Consider this factorial program, in which we assume f,n : N. What
laws are used for the first refinement step (shown)?

fo1f =nl]
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C var i:N-
fric[i <nAf=il; (i)
Liali<nAf=i, f=ilANi=n]. (ii)

Complete the refinement to code.

Ez. 6.2  Repeat Exercise 4.2, but this time assume that {z > 0} y:=+/z is
code, while y: =/z (on its own) is not. (Recall Section 6.7.)

Ex. 6.3 O  Assuming the context z : Z, show the following to be a valid refine-
ment:

z: [z > 0]
C var n: N
z:=

Ez. 6.4 Show that this refinement is valid:

w: [post]
C and post-

choose w .

Why does that mean that invariants cannot be code? Hint: Use the context when
checking the proviso of strengthen postcondition 1.1.

FEz. 6.5 O  Some programming languages allow declarations of constants as fol-
lows:

const ¢ = 3.

How can that effect be achieved with the declarations of this chapter? What are
the remaining differences?

Ex. 6.6 ©  Suppose we have context n : N. Is the following a valid refinement?
n: [712:1] C n:=-1.

Ez. 6.7 O  Which of the following specifications are feasible, assuming the dec-
larations n: N, 2:7Z; r:R; ¢:C?

L. n:[n=2|

2. z: [z =n]

3.r:[2>0, rP=2]

4. n: [z >0, n?=2z]

5. rife" =1, r=c+1/c]
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Ez. 6.8 Assume that the invariant is z = 0. Which of these specifications are
feasible?

L. z: [z =0]
2. z: [z =1]
3. z: [z =0, z=0]
4. z:jz=1, v =1]
5. choose z

Ezx. 6.9 Suppose we have type coercion functions for taking types into their
subsets. For example, the function nat takes any natural number to itself, and any
other number to some natural number. It satisfies these two properties:

1. ne N= n=natn
2. natc € N, for any c.

The other coercion functions are int, rat, real, and cpx.
Assuming the types n : N; z : Z; ¢ : Q; r : R; ¢ : C, determine whether the
following are valid refinements:

l.n:[n=2 C n:=natz

2.n:[z>0,n=2 C n:=natz
3.n:[r>0,n=r] C n:=natr

4. z2n<2, 22=n] C z:=intyn

5. ¢:[r>0, ¢*>=r] C q:=ratyr

6. ¢: [r#0, ¢q=2/r] C gq:=rat(2/r)
7.1m[c"=1,r=c+1/c] C r:=real(c+1/c).

FEz. 6.10 ©  What is wrong with the following ‘law’ for iterations?

w: [I, I NG
C? con e-

do G —
w: [GAN(e=E)NT, IN(0<E <e)
od .

Expression F is the variant, captured before each iteration by the logical constant

e.
Hint: Unfold the iteration.
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Chapter 7

Case study: Square root

In this chapter we follow a small but complete development from beginning to
end. The key to success — as is very often the case — will be the finding of
an appropriate invariant for an iteration. Application of refinement laws, and
the setting out of developments, will become routine with practice; but finding
invariants is always a fresh challenge.

7.1 Abstract program: the starting point

We are given a natural number s, and we must set the natural number r to the
greatest integer not exceeding /s, where / takes the non-negative square root of
its argument. Thus starting from s = 29, for example, we would expect to finish
with s =29 A r =5.

Here is our abstract program:

var r,s : N

ri=[vs) . ()

Although an assignment, the command (i) is not code, because in this case study
we assume that neither / nor | | is code. Our aim in the development to follow
will be to remove them from the program.

7.2 Remove ‘exotic’ operators

These first refinement steps remove the square-root and floor functions (‘exotic’
only because they are not code) from the program by drawing on their mathemati-
cal definitions. The steps are routine, and leave us with a specification from which
v/ and | | have disappeared:
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64 Case study: Square root

= “simple specification 1.7”

r:[r=[Vs]]
= “definition | |”
r[r <ys<r+1]
— “definition /”
r[rf<s<(r+1)?% . (ii)

Comparing (i) and (ii), we can see that the assignment is written for the client:
it uses powerful operators, leading to clear and succinct expression. Above all, it is
easy to understand. But we have now moved from assignment to specification, and
for two reasons: we need the freedom of a formula (rather than just an expression)
to exploit the definitions of \/ and | |; and a specification is easier to develop from
than an assignment.

7.3 Look for an invariant

The postcondition in iteration 5.5 is of the form v A -GG, and so we should
investigate rewriting our postcondition in (ii) that way. There are two immediate
possibilities:

r2 < sA=(s>(r+1)3%
and s < (r+12A=(r?>s).

The first would lead to an iteration
dos>(r+1)>—--- od,

with invariant 72 < s. (The assignment r:=0 could establish the invariant ini-
tially.) The second would lead to

dor’>s—--- od,

with invariant s < (r + 1)? (whose initialisation is not so straightforward — but
perhaps r:=s would do).

Either of those two approaches would succeed (and in the exercises you are
invited to try them). But the resulting programs are not as efficient as the one we
are about to develop. We rewrite the postcondition as

rP<s<@Ar+l=gq,

taking advantage of a new variable ¢ that will be introduced for the purpose.
(We use ‘rewrite’ here a bit loosely, since the two postconditions are definitely not
equivalent. The new one implies the original, as it should — remember strengthen
postcondition 1.1.) That surprising step is nevertheless a fairly common one in
practice: one replaces an expression by a variable, adding a conjunct that makes
them equal.

The refinement is the following:
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(ii) C var ¢: N
g, r:[rP<s<@FAr+1=gq].

Now having separate bounds on s gives us more scope: initially, » and ¢ could be
far apart. Finally, we should establish » + 1 = ¢, and that will be the source of
our increased efficiency: we can move them in big steps.

The next few refinements are routine when introducing an iteration: declare an
abbreviation (I for the invariant, just to avoid writing it out again and again), es-
tablish the invariant with an assignment (initialisation), and introduce an iteration
whose body maintains it.

The abbreviation I = ---is written as a decoration of the refinement. Like
other decorations there (var, con), it is available in the development from that
point on.

CIT=r<s<g
g, [IANTr+1=(q]
C q,r: [I]; (iii)
qgr:[I, INT+1=(|
C “invariant I, variant ¢ — r”
dor+1#gq—
qr:lr+1#q, 1, qg—r<q — r <
od .

Note that the invariant bounds the variant below — that is, we have I = 0 < ¢—r
— and so we need not write the ‘0 < --.” explicitly in the postcondition. We leave
the refinement of (iii) to Exercise 7.1.

Our next step is motivated by the variant: to decrease it, we must move r and ¢
closer together. If we move one at a time, whichever it is will take a value strictly
between r and ¢. So we introduce a local variable for that new value, and make
this step:

C var p:N-
prlr+1<q, r<p<gql; (iv)
¢ rir<p<gq,l,q—r<gqg-—rm).

Strictly speaking, there should be an I in the postcondition of (iv), since in our
use of sequential composition 3.3 the formula mid is clearly r < p < g AI. (It is
necessarily the same as the precondition of the <~-marked command, which includes
I: recall specification invariant 5.6.) But in fact I is established by (iv) whether
we write it there or not, since it was in the precondition of the iteration body and
does not contain p (the only variable that (iv) can change). Thus informally we
can see that (iv) cannot falsify I — but in fact we have appealed (tacitly) to this
law:
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Law 7.1 remove invariant Provided w does not occur in inwv,

w: [pre , inv , post] C  w: [pre , post] .
O

We now intend to re-establish 7?2 < s < ¢? in the postcondition with an as-
signment: either ¢:=p or r:=p. By investigating the proviso of assignment 5.2,
calculating (7% < s < ¢?)[¢\p], we can see that the first requires a precondition
s < p? (or at least as strong as that); similarly, the second requires s > p?. That
case analysis supplies the guards for our alternation:

Cifs<p’—=q[s<p’Ap<q,I,q<q] (v)
[ s>p?—=rs>p’Ar<p, I, rn<r] (vi)
fi
(v) C g:=p
(vi) C r:=p.

Note that the refinement markers (v) and (vi) refer to the bodies of the alternation
branches, and do not include the guards.

The simplifications of the variant inequalities are possible because we have used
contract frame 5.4 in each case. In (v) for example, removing r from the frame
allows us to rewrite ¢ —r < g — 19 as ¢ — r < ¢y — r, thence just ¢ < ¢p.

Now only (iv) is left, and it has many refinements: the assignment p:=r + 1
and p:=¢q — 1 are two. But a faster decrease in the variant — hence our more
efficient program — will result if we choose p midway between ¢ and r:

(iv) C p:=(qg+r)+2.

There we have reached code.

7.4 Exercises
Fz. 7.1  Refine (iii) to code.
Ex. 7.2 O Write out the code of the entire square-root program.

Fz. 7.3 Why can we assume r+1 < ¢ in the precondition of (iv)? Would r < ¢
have been good enough? Why?

Fz. 7.4 Q  Justify the branches (v) and (vi) of the alternation: where does p < ¢

come from in the precondition of (v)? Why does the postcondition of (vi) contain
an increasing variant?
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Ez. 7.5  Return to (ii) and make instead the refinement

CI=r2<s-
ri[IAs<(r+1)?.

Refine that to code. Compare the efficiency of the result with the code of Exercise
7.2.

Fz. 7.6 Supply all the missing justifications and/or steps in this proof of remove
wnvariant 7.1:

2 [pre , inv | post]

s [pre Ainv , inv A post|
2 [pre A inv | post]

: [pre , post] .

it
g g g g

Where does the proof fail when inv contains w?
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Chapter 8

Initial variables

We met initial variables briefly in Chapter 5, where they were necessary to specify
the decrease of variants. In this chapter we study them further, presenting gener-
alisations of earlier laws and definitions in order to take initial variables fully into
account.

8.1 Simple specifications

We have seen that both initial variables and logical constants can be used to refer
in a postcondition to a value based on the initial (rather than the final) state.
Just which one is used in any particular situation is a matter of taste: the three
commands

r:=r+1,
r: [z =19 + 1]
and |[[con X : z:[z=X, =X +1] ||

all increment z by 1. They are equal as programs.
That the first two are equal is a consequence of this abbreviation, relating as-
signments and specifications of a simple kind:

Abbreviation 8.1 simple specification For any relation ®,

w:0F = w:|wo F,

where Ej is Ew\wp).
O

As a special case we have that
w:=FE = w:|w=E,
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which explains the equality of z:=2z + 1 and z: [z = 25+ 1]. A further speciali-
sation, requiring F to contain no w, returns us to our earlier simple specification
1.7.

But there are many other uses of the idiom: the command z: > z, for example,
increases z strictly. In the context of the declaration n : N, the command n: < n
decreases n strictly, but not below 0. Abbreviation 8.1 allows us to write such
assignments in abstract programs without losing the opportunity of refining them
subsequently.

That latter example above is perhaps slightly surprising, and we should look at
precisely how the declaration ensures that n remains non-negative. The simple
answer is that in the context n € N nothing can make n negative, not even the
assignment n:=—1. (Recall the discussion in Section 6.6.) Thus if we refined
n:< nton:=n—1in the context n : N — and it is a refinement — the assignment
n:=n — 1 would be miraculous, and would fail the type-checking. Could we refine
n:<n ton:=née1, for which type-checking would succeed? We cannot, for after
using simple specification 8.1 to produce n: [n < ng|, we would by assignment 5.2
have to show

neN = nol<n.

That we cannot do, because we do not have in particular that 061 < 0.

8.2 Initial variables precisely

The second equality of the previous section is a consequence of this abbreviation,
which by using con makes our 0-subscript convention precise:

Abbreviation 8.2 initial variable Occurrences of O-subscripted variables in the post-
condition of a specification refer to values held by those variables in the initial state.
Let z be any variable, probably occurring in the frame w. If X is a fresh name,
and T is the type of z, then

w: [pre , post]
= |[con X : T-w:[preNz =X, post[z)\X]] ]| .

O

The frame of a specification has so far been our only reference to initial values:
those not in the frame are preserved. Now that initial variables allow us to be more
explicit, we can give laws for manipulating the frame:

Law 8.3 expand frame

w: [pre , post] = w,z: [pre, post Nz = x| .
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Note that Law 8.3 is an equality: the refinement goes both ways. The conjunct
x = 1y in the postcondition prevents z from changing; and so does omitting it from
the frame. With Law 8.3 we can prove our earlier contract frame 5.4, as follows:

w, z: [pre , post]

C “strengthen postcondition 5.17
w, z: [pre , post A x = 1)

= w,z: [pre , post|zo\z] A = ]

= “expand frame 8.3 in reverse”
w: [pre , post[zp\z]] .

8.3 Sequential composition revisited

Initial variables bring also a danger: there are some laws in which they must be

explicitly banned. Consider the following incorrect use of sequential composition
3.3:

z: [z = 29 + 1] (i)
C? “sequential composition 3.3”

z: [z =0];

rjr =0, z =15+ 1] (ii)

Cz:=0; z:=1.

It is incorrect because at (i) the initial variable zy refers to the initial value of z,
while at (ii) it has come to refer to the intermediate value of z, between the two
commands.

That is why Law 3.3 carried a warning footnote: it may not be used when initial
variables occur in mid or post.

The correct law for sequential composition, when dealing with initial variables,
is the following:

Law 8./ sequential composition For fresh constants X,

w, z: [pre , post]
C con X-
z: [pre , mid];
w, z: [mid[zg\X] , post[zg\X]].

The formula mid must not contain initial variables other than 1.
O

Law 8.4 is considerably more complicated than sequential composition 3.3, and so
should be reserved for cases in which its extra power is essential. Other alternatives
are sequential composition B.2 (probably the most appropriate in general), leading
assignment 8.5 and following assignment 3.5 (good for specific cases).
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yn:n=mng+1Af=fyxn]

Figure 8.1 Sequential composition with initial variables

The constraint of Law 8.4 ensures that mid[z,\ X| contains no initial variables
at all: they would not be meaningful in a precondition. (But see Exercise 8.2.)
Figure 8.1 gives an example of using Law 8.4.

Returning to the example that began this section, using Law 8.4 we have

z: [z =0];
=0, z=X+1] .

No longer can the second command be refined to z:=1. In fact, it cannot refine
to any code, since the logical constant X cannot be eliminated from it. But that
is not surprising: we do not expect to increment z by first setting it to 0.

For more examples of sequential composition 8.4 see Exercises 5.5 and 8.1.

8.4 Leading assignment

As an example of the use of the fuller form of sequential composition, we give
here a law complementary to following assignment 3.5; now the assignment comes
before, rather than after, the specification:

Law 8.5 leading assignment For any expression F,

z: [pre[z\E| , post[zo\ F]
E;

w7
C z:
w,z: [pre , post] .

The expression Ey abbreviates E[w, z\ wp, o).
|

With sequential composition 8.4, we can prove Law 8.5 as follows:
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w, z: [pre[z\E] , post[zy\ Ep]]

C “definition of Ey”
w, z: [pre[z\E] , post[zg\E[w, z\wy, %]]]
C “sequential composition 8.4”, con X -
z: [pre[z\E] , pre Nz = E[z\n]]; (i)
w, z: [pre A z = E[z\1p][1\ X] ,
post[x\ E[w, x\ wo, 2o]][20\ X]] (ii)
(i) C z:=F
(i) C w,z: [pre ANz = E[z\X], post[zo\E[w, z\wy, X]]]
C “strengthen postcondition 5.1, using 2y = E[z\X][wy\w] from precondi-
tion”
w,z: [pre Nz = E[z\X], post]
C w,z: [pre , post] .

Our earlier version leading assignment 3.6 is a special case of the above, where we
start with a simple specification derived from an assignment.

8.5 Exercises

Ezx. 8.1 Assuming z : R, prove this:

T [x>0, le/\/x_o]
C z: [xEO, IZ\/x_o];
[zt #£0, =1/x) .
Hint: Use a stronger mid than r = /.
Ex. 8.2 © Suppose a specification w: [pre , post] refers to zy in the postcon-

dition even though z is not in the frame. Why is that unnecessary? Use ezxpand
frame 8.3 to show that it is equal to w: [pre , post[zy\z]].

Ex. 8.3  The abbreviation initial variable 8.2 gives us this alternative to expand
frame 8.3:

Law 8.6 expand frame For fresh constant X,
w: [pre , post]
C con X-
w,z: [pre No =X | post Nz = X].
(I

Use expand frame 8.6 to show that

skip
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C con N-

n:=n-+1;, n:=n-—-1.
Assume n : N. Hint: Recall the formulation of skip on p.13.

Ex. 8.4 ©  Prove these equalities:

w: [pre , post] (i)
= w: [pre , (Fw - pre) = post] (ii)
= w: [pre , (Jw - pre) A post] . (iii)

Hint: To prove equality, show (i) C (ii) C (iii) C (i).

Ex. 85 O  Write down the law resulting from sequential composition 8.4 in the
special case that mid and post contain no zy. In what way is the result more
general than sequential composition 3.37

Ez. 8.6 Assuming n : N, use Definition 6.5 to show that the specification
n: [n#0, n < n is feasible.

Ez. 8.7 Q  Show for any frame w that
w: [true , false] = : [true, false],

and hence that magic need not mention its frame. Hint: Use expand frame 8.3,
and recall the hint of Exercise 8.4.

Ez. 8.8 Repeat Exercise 8.7 for abort.

Ez. 8.9  Repeat Exercise 3.8, this time taking initial variables into account.
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Chapter 9

Constructed types

In earlier chapters we used basic mathematical types for our variables, all of them
numbers of various kinds. In this chapter we are more ambitious, and expand our
repertoire considerably by using the types we have already to make other types,
and those to make others still. Our tools are powersets, bags, sequences, functions
and relations.

9.1 Powersets
9.1.1 Making powersets

Given any type we can form its powerset, the type that contains all its subsets:
given a type T, the type set T' has as elements all subsets of 7. Thus values
of the type set N include {}, {17}, {2,6}, the set of non-negative even numbers
{0,2,4,---} and of course N itself.

As a special case, the type finset 7" has as elements all finite subsets of T'. (Thus
N ¢ finset N.)

That’s all there is to making powersets; but when we introduce a new type, or
type construction, we must also decide how to describe individual elements of the
type and what operators will be available to use with them.

9.1.2 Using powersets: set enumeration and operators

Finite sets can be written by giving their elements explicitly, by enumeration be-
tween set brackets {---}. For example, the set {1,2,3} contains three elements
exactly: 1, 2, and 3. The order of elements does not matter in set enumerations
({3,2,1} is the same as {1,2,3}); and if by chance a value is written more than
once, it makes no difference ({1, 2,2, 3} is still the same).
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union functions
intersection

— (set) subtraction

Cartesian product

o C

membership relations
inclusion
strict inclusion

F NINm X

cardinality (a function to N)

Figure 9.1 Basic set operators

Set enumerations cannot describe infinite sets, except informally, because we
cannot write all the elements down: although we might say that the set of even
numbers is

{072747"'}7

we cannot really give ‘- - " any precise meaning in general.

Our numeric types have operators like + and —, and our set types have their
own operators, like U (union) and N (intersection). Those are what we use in terms
to combine given sets to form others. Figure 9.1 gives a selection of set operators.

9.1.3 Set comprehension

Set comprehensions define sets by some characteristic of their elements, rather than
by writing them out, and they apply equally well to both finite and infinite sets.
For example, the even numbers are those natural numbers n for each of which
there is another natural number m with n = 2m:

{n:N|(3@m:N-n=2m)} .

The general set comprehension has three parts (although the example above had
just two). The first is a list of bound variables and their types. In the above, that
list contains just one variable n and its type N. If there are several variables and
types, they are separated by a semicolon, for example m : N; n : N*. (As in
variable declarations, a repeated type may be omitted: thus we can write m,n : N
for m : N; n:N.)

The set is formed by allowing the bound variables to range over their types.

The second part is a formula, called the range; in the comprehension above,
it is (3m :N-n =2m). The formula usually refers to bound variables of the
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{n:N|n>0} = {1,2,3,---} =NF

{n:N|n<0} = {}
{m,n:N|m<n}
{n,m:N|m < n}

{n:N-—-n}

Il
~ .
—~~
— O
S =
~— —
—~~

Il
——
oo
=

\.P—‘
|
—_
Il
—
z

{m,n:N+m+n} 2,
{m,n:N|m>n-m?-n?} = {0,1,3,4,5,7, -}
{m:N;, n:{0,1,3}-4m+n} = {0,1,3,4,5,7,--}

Figure 9.2 Set comprehensions

comprehension (but need not). It can also refer to other variables, in which case
the set formed depends on the value of those. In any case, only values that satisfy
the formula are considered while the bound variables range over their types; other
values are just ignored. Sometimes the formula is just the formula true, in which
case it (and the |, pronounced ‘such that’) can be left out.

The third part of the comprehension is a term. For each possible value of the
bound variables, it is the value of the term that is put into the set. In the above,
the term is left out because it is just the bound variable n itself. In general, a
missing term is understood to be the tuple formed from the bound variables taken
in order. (A ‘monotuple’, containing just one component, is just the component
itself.)

If the term is present, it is preceded by a spot - (pronounced ‘make’). Here is
another definition of the set of even numbers:

{m:N-2m} .

Figure 9.2 gives further examples.

9.1.4 Promoted relations

If we have a type T with some relation ® on its elements, we can use the same
symbol ® for a promoted relation between sets s1, s2 : set T' as follows:

s1©s2 = (Vil:s1;62:52-t1 0 ¢2) .
And given a single element ¢ : 7" we further define

(Vi2:52- 1O 12)
(Vil:sl-t1ot) .

t® s2
slot

~
~

The convenience of promotion usually outweighs the danger of confusing the two
relations denoted by the symbol.
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Often the relation ©® is a total order, and the promoted relation allows formulae
of this kind:

1. s1 < s2: every element of sl is less than every element of s2.
2. n € sAn<s: the minimum value in s is n.

One must be especially careful, however, with transitivity: a promoted relation
is not necessarily transitive, even if it is based on a transitive relation: from 1 < {}
and {} < 0 (both true) we cannot conclude that 1 < 0. (See Exercise 9.3.)

9.2 Bags
9.2.1 Bag enumeration and operators

A bag, like a set, is a collection of elements. Unlike a set, however, an element
can belong to a bag ‘more than once’. Given a type T, the type of all bags of its
elements is written bag 7T'.

For bag b and element e, we write b.e for the number of times e occurs in b, and
the formula e € b is true if and only if b.e # 0. Traditional set operators carry
across to bags:

(b1Ub2).e = bl.elb2.e
(b1Nb2).e = bl.eMb2.e
(b1 —02).e = (bl.e—102.e)LI0.

As well, there is a new operation of bag addition:
(b1 +02).e = bl.e+ b2.e.

Like sets, bags can be explicitly enumerated; the elements are written between
bag brackets | and |. Unlike set enumerations, bag enumerations are sensitive to
how many times an element is written: if it is written twice, then it occurs twice
in the bag. But order is still ignored. Figure 9.3 gives examples of bags and bag
operations.

9.2.2 Conversion between bags and sets

The function set converts a bag to a set by ‘forgetting” multiplicity:
set : bag T —set T .

For example, set|1,2,2,3] = {1,2,3}. In general, for s = set b we have that e € s
iff e € b.
The function bag, goes the other way, converting a set into a bag:

bag : N—set T'—bag T .
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[1,2,2,3].1 = 1
[1,2,2,3].2 = 2
[1,2,2,3].3 = 1
[1,2,2,3]4 = 0

[ u L]

L1+ 11] [1,1]
[1] —11,1] L]
L) =) =[]

[1]

Figure 9.3 Examples of bags and bag operations

In:|1,2,2,3]-2n] = |2,4,4,6]

|m,n:N-m+n|] = [0,1,1,2,2,2,---]
Im,n:N|m<n-m+n| = |[1,2,3,3,4,4,--]
|m,n:N|m<n-n| = |1,2,2,3,3,3,4,4,4,4,--

Figure 9.4 Examples of bag comprehensions

Each element in the set is given multiplicity n in the resulting bag; if n is omitted,
it is taken to be 1. For example, bag, {1,2} = |1,1,2,2|. Whenever b = bag, s,
we have that b.e = n if e € s, and b.e = 0 if e € s. Finally, the two functions are
complementary in the sense that for any set s, setbags = s.

Promoted relations between bags are available as for sets.

9.2.3 Bag comprehension

Bag comprehensions, like set comprehensions, define bags by some characteristic of
their elements; the difference is that they are written between bag brackets instead
of set brackets. Unlike set comprehensions, the types of the bound variables are
bags themselves. (If they are written as sets, then they are first implicitly converted
to bags by the function bag.)

Multiplicity in bag comprehensions can arise in two ways. First, particular values
of bound variables can occur more than once (since they are themselves taken from
bags). Second, if the comprehension makes a term, it is possible for the same value
to result from evaluations of the term with different values for the bound variables:
thus |n: |[—1,0,1] - n?] = [ 1,0,1].

Figure 9.4 gives examples of bag comprehensions.
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9.3 Sequences
9.3.1 Sequence enumerations and operations

A sequence is a collection of elements in which the order (and multiplicity) is
significant. Given a type T, the type seq T has as elements all finite sequences of
elements of T (of any length, including 0). For the type of all sequences of T' with
fixed length L we write seq; 7. As a special case we use seq,, T for the type of
all strictly infinite sequences of T'.

Sequence enumerations are written between the sequence brackets ( and ). For
sequence ¢ and natural number n, we write ¢[n] for the element occupying the n'
position of ¢, with the first position being index 0.

For sequences of integers, we allow a special ellipsis notation: the term m—n
denotes the sequence starting at m and ending just before n. Thus 1—4 is the
same as (1,2, 3).

The principal operations on sequences are cons ‘:’, concatenation ‘H+’, head hd,
tail tl, front fr, last It, and length ‘#’. They are summarised in Figure 9.5, and
Figure 9.6 gives examples of their use.

9.3.2 Conversions between sequences, bags, and sets

The function seq. converts a bag or set to a sequence whose elements are ascending
in the total order <: if a occurs before b in the sequence, then ¢ < b. If the order
< is omitted, it is understood to be the standard order on the element type of the
bag or set. For seq. to be well-defined, the order < should be such that every
non-empty set has a least element with respect to the order.

If an element occurs n times in the bag, it is repeated n times in the sequence;
when seq is applied to a set, however, each element occurs exactly once in the
resulting sequence.

The function bag takes sequences to bags (as well as sets to bags), and the mul-
tiplicity in the sequence is preserved. Similarly, the function set takes a sequence
to the set of its elements (in which case the multiplicity is not preserved).

Those functions too are complementary: for any set s and bag b,

bagseq. b =
setsqu s = §.

We may omit the conversion functions altogether if their use is implicit in the
context, and that allows some compact (and possibly confusing) idioms. Some
examples are given in Figure 9.7.

Promoted relations are available between sequences as for sets and bags. (That
follows in fact from the implicit conversion convention: the sequences are converted
to sets first.)

© Carroll Morgan 1990, 1994, 1998



80 Constructed types

#q The number of elements in q.

e:q The sequence whose first element is e, and
whose subsequent elements are those of q. We
have (e:¢)[0] = e and for 0 < i < #q,

(exq)[i] = q[i — 1].

ql +# g2 The sequence that begins with ¢1 and carries
on with ¢2. We have (¢l + ¢2)[i] equals ¢1[i],
if 0 < i < #q1, and equals ¢2[i — #q1] if
0 <1 —#ql < #q2.

hd ¢ The first element of ¢, provided ¢ is not empty.
We have hd({e) + ¢) = e.

tlq The second and subsequent elements of ¢, pro-
vided ¢ is not empty. We have tl({e)+¢) = ¢.

frq All but the last element of ¢, provided ¢ is not
empty. We have fr(q # (e)) = q.

It ¢ The last element of ¢, provided ¢ is not empty.
We have It(q + (e)) = e.

Figure 9.5 Operations on sequences: definitions

#() = 0
L2+ = (1,2)
(0 +#(L2) = (1,2)

1:(2,3) = (1,2,3)
1) +#(2,3) = (1,2,3)
hd(1,2,3) = 1
t(1,2,3) = (2,3)
fr(1,2,3) = (1,2)

t(1,2,3) = 3

Figure 9.6 Examples of operations on sequences

9.3.3 Sequence comprehension

Sequence comprehensions define sequences by some characteristic of their elements.

The bound variables should be sequences themselves (though implicit conversion
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eEq e occurs in the sequence q.

q.e the number of times e occurs in sequence q.
s[n] the n'-from-least element of the set s.

b[n] the n'-from-least element of the bag b.

q = bagq the sequence ¢ is in order.

bag ¢ = set ¢ the sequence is without repetition.

b=setb the bag is without repetition.

Note that in the final three cases, it is the right-hand side that is con-
verted implicitly, rather than the left (though either would achieve type
compatibility). Where there is a choice, we take the conversion that
adds information (for example, from bag to sequence).

Figure 9.7 Implicit conversion idioms

(n:N.2n)y = (0,2,4,---)
(i:0—10] i > 50) = (8,9)
<27]N|]<Z> <(1v0)7(2v0)7(2v1)7(3v0)7"'>
n:N- n2> <07 1,4, > (: 84, S&Y)
<n :N- n3> <07 L8, > (: Cba SaY)
(i:s8¢; j:cb|i=j-i) = (0,1,64,729,---)

Figure 9.8 Sequence comprehensions

may operate, if the element types have standard orders); then the order of the
resulting sequence is determined by taking the values of the bound variables, in
order, from their types. If there are several bound variables, then the rightmost
varies fastest. Figure 9.8 gives examples of sequence comprehensions.

Sequences of sequences allow multi-dimensional structures, and for g¢[i][j] we
allow the abbreviation ¢[i,5]. The ‘i** row’ of ¢ is just ¢[i]. The ‘j® column’ of ¢
is (i : 0—q - q[i, j])-

9.3.4 Sequence idioms

We list below some convenient operations on sequences that can be defined by
comprehension.
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Filter

A filter is a one-place predicate p which can be used to select those elements of a
sequence to be retained, in their original order. For sequence ¢, its filter by p is
(e :q|pe). More succinctly, we can write just p < g.

Composition

Given some sequence i of natural numbers, the composition of a sequence ¢ with i
is made by taking the elements of ¢ indexed by the elements of . It is written ¢[¢]
(distinguished from the ordinary indexing by the fact that i is a sequence), and is
equal to (n : i - q[n]). Note that ¢[i] is not necessarily a subsequence of ¢, because
¢ itself might be out of order:

0,2,4,6,8)[(2,1)] = (4,2).

The operation is called composition because of its being related to functional com-
position when the sequences are considered to be functions from their indices to
their elements.

Subsequence

A subsequence is a sequence composition taken in the original order. For that, we
take a set s of natural numbers, and write ¢[s]. The implicit conversion takes s to
a sequence — in ascending order — and the resulting composition then selects the
elements in that order. A sequence ¢2 is a subsequence of another ¢1 iff there is
a set of natural numbers that produces ¢2 from ¢1 in the above way; in that case
we write ¢2 < ¢q1, which is defined to be (Is : set N - ¢2 = ¢1[s]). For example,

(0,2,4,6,8)[{3,1}] = (2,6)
(2,6) < (0,2,4,6,8) .

We also allow the complementary ¢\ s, which is the subsequence formed by exclud-
ing the indices in s: it is (i : 0—=#q | i & s+ q[i]). For example,

(0,2,4,6,8)\{3,1} = (0,4,8) .

Subsegment

A subsegment is a contiguous subsequence (without ‘gaps’). For that, we compose
with a sequence m—n for some natural numbers m and n; the resulting subsegment
of q is g[m—n]. A sequence ¢2 is a subsegment of another ¢1 iff there is a pair of
natural numbers that produces ¢2 from ¢1 in the above way; in that case we write
q2 < ¢1, which is defined to be (3m,n : N+ ¢2 = gl[m—n]). For example,

(0,2,4,6,8)[13] = (2,4)
(2,4> < (0,2,4,6,8>.
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Prefiz

A prefir is a subsegment that begins the sequence. We compose with a sequence
0—n for some natural number n; the resulting prefix is ¢[0—n|, which we can
write ¢Tn and pronounce ‘g take n’. A sequence ¢2 is a prefix of another ¢1 iff
there is a natural number that produces ¢2 from ¢1 in the above way; in that case
we write ¢2 C ¢1, which is defined to be (3n : N- g2 = ¢q11n). For example,

(0,2,4,6,8Y14 = (0,2,4,6)
(0,2,4,6) C (0,2,4,6,8) .

)

Suffiz

A suffiz is a subsegment that ends the sequence. For sequence ¢, we compose with
a sequence n—#¢ that removes the first n elements; thus the suffix is ¢g[n—#q¢|.
We can write that ¢/n; it is pronounced ‘g drop n’. Note that ¢Tn + gln = ¢ for
all n such that 0 < n < #gq. For example,

(0,2,4,6,8Y14 = (8).

9.4 Distributed operators

The set, bag, and sequence comprehensions have in common the ideas of bound
variable, range, and term: each makes a set, bag, or sequence respectively as
indicated by the surrounding brackets: {---}, |---], or (---). That convention can
be generalised, as we see below. But first we consider some properties of binary
operators on their own.

A binary operator @ is associative if for all a,b,c of appropriate type we have

(a®b)®c = ad(bde).

Many of the arithmetic operators are associative (Figure 6.2); in particular we have
associative +, x, Ll and . The set operators U, N, the bag operator +, and the
sequence operator H- are associative as well.

To each associative operator corresponds a distributed operator that can be ap-
plied to a whole sequence. For example, corresponding to +, which sums two
numbers, we have ), which sums a sequence of numbers. In general, distributed
operators are written

(@z:q|R-E),

where @ is the associative binary operator, z is the bound variable, R is the range
formula, and E is the term. The elements z of the sequence ¢ are considered,
one-by-one, in order; those satisfying R are retained; the term FE is formed for
each; and finally @ is applied ‘between’ the resulting values, in order. Since & is
associative, it does not matter how the applications of @ are grouped.
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(+i: 0—n-i?) The sum of the first n squares.

(xd :N|(d|n)) The product of the divisors of
n: N

(Mz:Z|z>r) The ceiling [ | of r : R.

(LUg" :seqZ | ¢ = qANq <0-#¢q') The length of the longest sub-
segment of ¢ : seqZ all of
whose elements are negative.

Figure 9.9 Examples of distributed operators

The same conventions apply to distributed operators as to comprehensions: the
range R defaults to true, and the term E defaults to the bound variable z. Hence
we can define the sum of a sequence ¢ : seq Z, say, as

> qg= (+z:q|true-z) = (+z:9q) .

Distributed operators are applicable to the empty sequence only if the original
operator has an identity, a value e such that for all « we have e ® a = a ® e = a.
In that case the result is the identity e, and for example we have therefore that
() =0.

An operator @ is commutative if for all ¢ and b we have
a®b = bda.

If an operator is commutative and associative, it can be distributed over bags as
well as sequences. A non-commutative operator (like 4) cannot be distributed
over a bag, because the result depends on the order in which elements are taken,
and a bag has no order.

Finally, an operator & is idempotent if for all a

a®a = a.

Any operator having all three properties can be distributed over sets as well. Thus
the maximum of a set s of numbers is simply

(Uz:s) .

If a non-commutative operator is distributed over a bag, or a non-idempotent
operator over a set, we implicitly convert the bag to a sequence, or set to a bag,
as appropriate. Thus (+z : s) is the sum of the elements in the set s.

Figure 9.9 gives examples of distributed operators.
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9.4.1 Quantifiers with ranges

Conjunction A and disjunction V are associative, commutative, and idempotent
too, and they are operators over the Boolean type {true,false}. They are also
propositional connectives — symbols we use within formulae — and we can exploit
their properties there as well: we say that distributing A gives V, and distributing
V gives d.

In fact, the notations of Sections 2.5.1 and 2.5.3 are deliberately close already
to that for distributed operators, and the correspondence can be made exact by
introducing ranges for quantifiers. (See Predicate laws A.54 and A.55.)

9.5 Functions
9.5.1 Partial functions, domain and range

The square root function 4/, taking real numbers to real numbers, has type
R+R.

The left-hand R, the source, is the set from which the arguments are drawn; the
right-hand R, the target, is the set within which the results lie. The direction of
the arrow indicates which is which (from source to target), and the stroke on the
arrow indicates that the function is partial: there are some elements of its source
for which it is undefined.

There is no reason in principle, given the freedom we already allow ourselves
with abstract programs, that we could not declare a variable of that same type
and assign 4/ to it:

var f : R+ R:
f=W)-

(We have enclosed y/ in parentheses to make it clear that we mean / as a function,
not / expecting some further argument.)

In fact we shall do exactly what is suggested above, allowing for any two types
S and T the function type S + T which, itself a type, can be used in declarations
or to build still further types.

Our mathematical view of functions is that they are sets of pairs, with each pair
containing one element from the domain and the corresponding element from the
range. Thus these pairs are some of the elements of / :
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All of the pairs are elements of the Cartesian product of R with R, written R x R:
in general the elements of the set S x T are pairs (s,t) with one element drawn
from S and the other from 7. Thus any function in S+ 7" is a subset of § x T
Associated with functions, as a type, are certain operations. The domain of a
function is that subset of its source on which it is defined: for f : S+ T,

domf = {s:8;t:T|(s,t) ef-s} .
Since f is itself a set, we can write that more succinctly as

{(s,8): f - s}

if we allow tuples as bound variables (which therefore we do).
The range of a function is that subset of the target which it might actually
produce (given the right arguments):

ranf = {(s,t):f-t} .

Thus dom(y/) = ran(y/) = ‘the non-negative reals’.
Note that ran(y/) = ‘the non-negative reals’ means in particular that every non-
negative real number is the square root of something.

9.5.2 Total functions

For any function f : S+ T, we have domf C S and ranf C T. When equality
holds in either case, we can be more specific: function f above is total when it is
defined on all its source. In other words,

f is total means that domf =S5 .
If f can produce every element of its range, we say that it is onto (or surjective):
f is onto, or surjective, means that ranf = T

For total functions we have the special notation of ‘uncrossed’ arrow, so that declar-
ing f : S — T is the same as declaring f : § + T and stating additionally that f
is total. Put another way,

var f : §S— T

has the same effect as var f : S+ T'; and domf = §.

Totality of a function is relative to its declared source: although partial over R,
the square root function is total over the non-negative reals. The same applies to
whether the function is onto: thus square root is total and onto if declared from
non-negative reals to non-negative reals.
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9.5.3 Function application and overriding

Given f : §+ T and some s : dom f (which implies that s € S as well), we apply
the function f to its argument s by writing f s. The result is an element of ran f,
and of T (since ranf C T). An alternative way of writing the application is f[s].

(‘Ordinarily’, such function application is written f(s). We have chosen instead
to reserve parentheses for grouping, and indicate application by simple juxtapo-
sition. The f[s] variant is suggested by analogy with sequences, since they are
functions from their indices to their values.)

As an ‘abuse’ of notation (actually a convenience), we allow f[ss], given ss : set S
as a set of values, and by it we mean the set of results obtained by applying f to
elements of ss separately (and ignoring those that are undefined). Thus

flss] = {(s,t):f|s€ss-t} .

We can modify a function at one or more of its source values, so that

fls:=t]
is the function f overridden by s:=t. Letting g be f[s:=1t]|, we have

gls] = t (no matter what f[s] is),
and g[s'] = f[s'] for any s’ # s.
If s # s' and f is not defined at s’, then neither is g.
Similarly,
(flss:=t)[s] = ¢ if s € ss

= fls] ifs¢ss.

More generally still, we can override f by another function g; the resulting
function f @ g behaves like ¢ if it can (if ¢ is defined at that argument), otherwise
like f. Thus

(f @ g)ls] = g[s] if s €domy
= f[s] otherwise.

If neither f nor g is defined at s, then f @ g is undefined there also.
In terms of sets,

f@®g = {(s,t):fUg|sedomg=(s,t)€g} .

That last formulation takes undefinedness automatically into account.

Our earlier notations for overriding can now be seen as special cases of the
above, because f[s:=t] is just f overridden by the (singleton) function {(s,¢)},
which takes s to ¢ but is undefined everywhere else. In the f[ss:=1t] case the
overriding function is {s : ss - (s, t)}, defined only on ss.

The overriding notations ‘[s: =---]" apply to sequences also, as they are a special
case of functions.
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9.5.4 Restriction and corestriction

Finally we have operators for restricting functions to smaller domains and ranges.
Given f : S+ T, ss :set S and tt : set T', we define

ss<Af = A{(s,t):f|s€ss}
ss<f = {(s,1):f | s &ss}
feit = {(s,t):f|tett)
fett = {(s,t):f|teut) .

An immediate use for 4 is an even more compact definition of overriding;:

f@®g = ((domg)<sf)ug.

9.6 Relations
9.6.1 Generalised functions

Relations are a generalisation of functions: for source S and target 7' the corre-
sponding relational type is written

ST,
and, like functions, relations are sets of pairs. In fact,
ST = set(SxT),

which means that any subset of § x T is a relation. In contrast, only some subsets
of § x T are functions; just which subsets they are we shall see shortly.

The generalisation of relations beyond functions is that relations are ‘multi-
valued’: whereas for function f and source value s there is at most one f[s], for
relation r there may be many related target values.

Compare for example the function pred of type N-» N (it subtracts 1 from pos-
itive natural numbers) with the relation ‘less than’ <, of type N «» N. The two
agree on source element 0 (because pred is undefined there, and no natural number
is less than 0), and on source element 1 (because pred 1 = 0 and the only natural
number less than 1 is 0). But beyond 1 we find that < is more generous:

source value s preds less than s

2 1 0,1
3 2 0,1,2
4 3 0,1,2,3

The function returns just one value, whereas the relation relates s to many values:
the predecessor of s is one of the values less than it.
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As sets, we have

pred = {(1,0),(2,1),(3,2),---}
(<) = {(170)7(271)?(270)v(372)v(371)v(370)7"'}7

and thus we see clearly the difference between a relation and a function: in this
case it is just that pred C (<).

9.6.2 Functions are relations

Functions and relations are both sets of pairs — but functions have the special
property of being single-valued: for relation r in S' <+ T', we say that r is functional,
or single-valued, if for all s in S there is at most one r-related ¢ in 7. That is,
r:S < T is functional iff

(Vs:S;t,t' - T-(s,t)ern(s,t)yer=t=1t).

Thus a function is just a functional relation.
A related property is injectivity (or being one-to-one): a relation r : S <> T is
injective if

(Vs,s":95t:T-(s,t)ern(shit)yer=s=5").

The same notion applies to functions — because they are relations — and so an
injection (or one-to-one) function is one that cannot deliver the same result for
different arguments. Thus pred is injective, because ¢« — 1 = b — 1 = a = b; but
sqr is not, because for example

sqr(-1) = 1 = 'sqrl,

but —1 # 1. (Function sqr returns the square of its argument. Don’t worry about
the font convention for functions — it is only a convention, after all — but we
are using sans serif for specific, named functions like sqr, and italic for function
variables like f.)

Most of the operators and notations we have defined for functions work for
relations as well, and we summarise them here: for r: § < T,

dom r = {(s,t):r-s}
ran 1 = {(s,t):7r-t}
r is total iff dom r=S§
risonto iff ran r=7T
if ss :set S, then r[ss] = {(s,t):r|s€ss-t} .

For overriding we have

r@®r" = ((dom rYar)yur,
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and for the more specific cases then

rls:=t] = r®{(s,t)}
rlss:=t] = r@®{s:ss-(s,t)} .

Thus for example r[s: =t| replaces all associations from s with a single new asso-
ciation to ¢.
Finally, for applying a relation one might be inclined to define

ris] = {t:T]|(s,t)er},

but there is a potential confusion there in that we would not know for example
whether pred 1 was 0 (taking pred as a function) or {0} (taking pred as a relation).

For writing that s and ¢ are related by r, we have two possibilities: either
(s,t) € r, relying on the set-based nature of r, or s(r)t, a special notation for
relations.

The fact that functions are relations causes no problems here, since 1(pred)0
means the same as 0 = pred 1. (Note however the confusion caused by the gen-
eral convention of writing function types from [left to right, but supplying their
arguments on the right!)

9.6.3 Inverses

Given r : S «+ T, its inverse is written r ! and is of type T <+ S. The value of

r~! is obtained from r simply by reversing the pairs:

rto= (s, t):r-(t,8)} .

Thus (<)~' = (>), and pred ™" = succ (where function succ adds 1 to its argument).

That pred™" is a function (rather than a relation) is just a bit of good luck: it
is because pred is injective. In contrast, inverting sqr does not give a function,
because for example

{(17 _1)7 (17 1)} C Sqri1 .
Since sqr is not injective, its inverse is not functional: it is a proper relation that

for any argument supplies both the positive and the negative square root. Our

earlier function |/ is a proper subset of sqr—?.

9.7 Exercises

Er. 9.1 Evaluate these terms:

1. bag{}
2. set| |
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bag, s

bag{1,1}

set|1,1]
set[m,n:N-m+n| .

S Ot W

Fz. 9.2 O  Write set comprehensions for the following:

1. The perfect squares.

2. The natural numbers whose prime factors are in the set {2,3,5}.
3. The prime numbers.

4. The complex n'* roots of unity.

Ex. 9.3 O Consider this alternative definition of the promoted relation ®:
s10s2 = s1A{JAS2#{}A(Vtl:51;12:52-t1Ot2) .

Now suppose that ® is transitive; is its promotion transitive as well? Why don’t
we define promotion as above?

Ezx. 9.4 Evaluate these terms:

seq N.

seq bag(2,1, 3,1).

seqset(2,1,3,1).

{n:N-2n}[7] (The 7% element of the sequence formed from that set.)
(m,n : N+m+ n).99 (The number of occurrences of 99 in the bag formed
from that sequence.)

Ot W=

Ezx. 9.5 Show that the operations U, N, and —, applied to bags without repeti-
tions, yield bags without repetitions. (That is why we can use the same symbols
for operations on sets.)

FEz. 9.6 O  Consider a set comprehension in which no bound variables are given.
What is the value of {| true-z}? Of {| false-z}7? What is the value of (i : 0—n-z)?

Ezr. 9.7 Q  Define the product [ q of a sequence ¢ : seq Z. What is [J()?

Ex. 9.8 If we restrict the distributed maximum |] to sets s : N of natural
numbers, what would | [{} be? Why?

Ez. 9.9 Write as a set comprehension the set of all permutations of a given
sequence .

Ex. 9.10 O  What is the effect of this operator on sets s:
(+z:s5-1)7

On bags? On sequences?
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Ezx. 9.11 In type expressions, we let Cartesian product bind more tightly than
-+ or —, and the latter two both associate to the right.
Give the sizes of these types in terms of the sizes of their components:

S1xS2—=T — that is, (S1x §2) =T
S1—-852—>T — that is, S1 —=>(52—T)
S1x S2+T

S1+82+T

S1—82+T

S1+82—1T.

SEERAN i

Explain carefully any discrepancy in size between types 3 and 4.

Ezr. 9.12 A sequence s : seqy 7T can be regarded as a function of type N—+ 7.
What subset precisely of N-+ T is the set seq 77
With s declared as above, what is dom s?

Ex. 9.13 Which of these declarations are of total functions over N?

1. s:seqy T
2. s:seq T
3. s:seq,, T

Ex. 9.1/ Consider f : N-» T and s : seq T. For n : N, when is f[n|: =t
meaningful but s[n]: =1t not?

Ex. 9.15 Linear search Assuming declarations as : seqy A and ¢ : N; a : A
show that

)

i: [a € as = a = as[i]]
C i:=0;
doi<NANa#as[i] >i:=i+1od.

Hint: Note that termination is required even if a ¢ as: use invariant a &€ as?i.
Do not worry about possible ‘undefinedness’ of as[i] when i = N, since the first
conjunct 7 < N is false in that case anyway. (See Exercises 9.16 and 9.17 however
in that connection.)

FEx. 9.16 © Linear search Assume our programming language treats as[i| as
‘undefined” when ¢ is not in the domain of as, and that programs evaluating asi]
under those circumstances will behave unpredictably (like abort).! Thus (recalling
Section 6.7) an evaluation of as[i] will not be accepted on its own as code by our
compiler: if as were declared seqy A, for example, then

!That is the usual situation, but differs from the convention in this text that all expressions
terminate: we would say for ¢ outside the domain of as that as[i] returned some value but we
do not know which. Our view is convenient for development, but requires more from compilers:
either they must generate always-terminating code for expressions (as in Exercise 9.15), or they
must carry out compile-time checks as illustrated in this exercise.
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a:=as[i]

would not be code, and would be treated as a syntax error (although it is never-
theless meaningful). We would have to write instead

{i < N} a:=asli],

assuming the declaration i : N (which guarantees 0 < 7).
For possibly ‘undefined’ iteration guards the compiler would insist on ‘well-
formedness assumptions’ (like {i < N} above) placed as follows:

{*G is defined’}
do G —

prog

{‘G is defined’}
od .

Explain briefly why they should be placed like that.
Show that

i: [a € as , a = asli]]
C ::=0;
{i < N}
do a # as[i] —
ti=1+1
{i < N}
od ,

and explain informally why the possible evaluation of the ‘undefined’ as[i] is now
acceptable. What general rule can you formulate about the connection between
iteration invariants and definedness conditions for the iteration guards?

Ex. 9.17 © Can Exercise 9.15 be done under the conditions of Exercise 9.167
Putting it rigorously, we are asking whether this refinement is valid:

i: [a € as = a = as[i]]
C i:=0;
{i < N}
doi < N Aa# as[i] -
ti=1+1
{i < N}
od .

If it is valid, show it to be so; if it is not, show it to be invalid, and give an
operational explanation for the failure.
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Case study: Insertion Sort

Insertion Sort is one of the simplest sorting algorithms, and will be our first case
study involving sequences (or arrays).

The number of comparisons it makes is proportional on average to the square
of the number of elements to be sorted. Later we will do better than that; but for
now we study Insertion Sort as our first example of nested iterations.

10.1 What it means to be sorted

We are given sequence as of integers, and we must rearrange its elements so that
they are ‘sorted’. To be more precise, we define a predicate ‘is in non-strict as-
cending order’,

upas = (Vi,j:0—=as-i <j= as[i] < asfj]) ,

by which we mean ‘if the index of one element is no greater than the index of some
other element, then the value of that element is no greater than the value of the
other’.

With up, we can start with the following abstract program:

var as : seqy Z; con A;
and A = bag as-
as: [up as].

The variable as is, of course, the sequence we are to sort.

The logical constant A is the bag of elements in the sequence, and the invariant
A = bag as means therefore that elements may neither be added to nor removed
from as. Thus the sequence can be rearranged but not otherwise altered, and so
we exclude trivial code such as as:=0—N.
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10.2 Similar pre- and postconditions

We approach the problem by successively sorting larger prefixes of as: at first, no
matter what values as contains, still its empty prefix is sorted. What we want
is to make its ‘longest prefix’ sorted, since the longest prefix of a sequence is the
sequence itself.

The approach above is suggested to us, in fact, by the text of the abstract
program, if we try to make its pre- and postconditions similar. By introducing
prefixes explicitly,

C as: [upast0, upastN] ,

we can see that somehow we want ‘to change the 0 into an N’.

Both 0 and N are constants, yet we want them to vary — therefore we replace
them both by a new variable k, and vary that: variable k£ can move from 0 to N,
allowing us to write Tk in the pre- and postcondition. From there, the development
of our first iteration is routine:

C var k:N-
k:=0; (i)
as,k: [k =0, upastk , k = N] <

C I =Fk<NAupastk-
as,k: [I , INk=N]|
C “invariant I, variant N — k”
dok#N —
as, k: [k < N, I, k> k] <
od .

(See Exercise 10.1 if you are puzzled about (i).)
Note how in the precondition above (writing k& < N rather than k£ # N) and in
the postcondition (omitting N > k) we have made use of the invariant I.

10.3 Decreasing the variant

In many cases the easiest way is to deal with a variant is to decrease it explicitly,
and we do that here with following assignment 3.5. After applying specification
invariant 5.6, we proceed as follows:

C “following assignment 3.5”

as,k: [k < NANT | Ik\k+ 1A (k+1) > k); 4
k:=k+1
C “contract frame 5.4”
as: [k < N AT, Ik\k+ 1] (ii)
(ii) C as: [k < N Aupastk , upast(k+1)] . (iii)

© Carroll Morgan 1990, 1994, 1998



96 Case study: Insertion Sort

Specification (ii) is an extremely common pattern in iteration bodies: assume
truth of the invariant at k, then establish its truth at & + 1.

10.4 TIterating up, and down

If the pattern so far is such a common one, then we really should see whether we
can generalise it for later use. Suppose N > 0; then given a specification

as,k: k=0, 1, k=N],

we can by choosing invariant / A0 < k£ < N develop the iteration

do k£ N —
as: [INO <k <N, Ik\k+1]]; q
k:=k+1

od

by following steps like those in the previous section; the marked statement —
where development continues — produces code to ensure that, when the subsequent
k:=k+1is executed, the invariant will be re-established. Let us call the refinement
above iterate up.

A second possibility for iterating up is to increase k first, then re-establish the
invariant. Then we have instead

dok#N —

k:=k+1;

as: [I[k\k —1]AN0< k <N, I
od .

Similar possibilities, for decreasing k (from N to 0 rather than from 0 to N), are
examined in Exercise 10.9, where we call them iterating down.

With our ‘packaged’ up-iteration, we could redo our development so far as fol-
lows:

var as : seqy Z; con A;
and A = bag as-

as: [up as] q
C var k£ : N-
k:=0;
as,k: [k =0, upastk , k = N] <
C “iterate up”
dok#N —
as: [k < N Aupastk , upast(k + 1)]; (iii)
k:=k+1
od .
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10.5 A tricky invariant

With the iteration body (iii) we are left with what appears to be a fairly straight-
forward problem: given a sequence of length k£ 4+ 1 whose first £ elements are in
order, effect a rearrangement that brings all k+1 of its elements into order. (The
‘sequence of length & + 1’ is the prefix asf(k + 1); in casting the problem as we
have, we are taking a (small) chance by ignoring the possibility of using elements
beyond the prefix (from as)(k + 1)). But the chance we are taking is not that we
will develop the wrong code — rather it is that we will develop no code at all.)
An obvious move for ‘making the pre- and postconditions similar’ is to write the
postcondition as ‘the first k£ elements are sorted, and the last one is too’:

upast(k+1) = upastk A asTk < as[k] .

The resulting iteration would begin do —((astk) < as[k]) — ---, and the body
would have to maintain up as?Tk. Thinking about it operationally, however, there
seems no way to move as[k] gradually to its correct place in sequence as while
maintaining the order of astk — it would just have to be moved all at once, and
then there would be no need for an iteration at all.

A slightly less obvious approach (but we are now forced to try a bit harder) is to
generalise slightly: let the invariant be ‘all but one of the elements are sorted’ (so
to speak — we will be more precise in a moment). Then initially the one element
that is not is as[k]; finally it will be some other — say as[l] — but we will add a
conjunct to the postcondition ‘element as[l] is sorted as well’.

Now we must make that idea a bit more precise.

Again we try to make the precondition and postcondition similar. Since our
concern is mainly with the prefix ast(k + 1), we call that P (for ‘prefix’), and the
precondition can be written up P\{k}, meaning ‘P is sorted except at k’. (We
use upper case for P to remind us that it is an expression, not a variable, and so
cannot be assigned to.) In the postcondition we want, for some local variable [,

up P\{I} A PP < P[l] < PL(I+1) .

The first conjunct expresses that the prefix P is sorted except at [; the second
expresses that it is sorted at [ as well.

After all that preparation, we now have the refinement step, in which we add
the local variable [. In the postcondition we constrain it to lie within the bounds
of P (it is non-negative anyway, because of its type):

P = ast(k+1) an expression
(ifi) J = PN <P[l] a formula
= K = P[l]<Pl(l+1) aformula
var [ : N.

as,l: upP\{k}, I <kAupP\{I} NJAK].
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~(P11 < P[I)
econditio Pk

precondition up P\{1}

Pl < Pl(l+1)

lol1<k
postcondition | up P\{I&1}
Plle1] < Py

Figure 10.1 Pre- and postcondition of inner iteration body

Looking at the precondition, we see that [ should start at k, and so tend to
0. Looking at the postcondition, we see that there are two possibilities for the
guard: either the negation of J (leaving K in the invariant), or the other way
around. Since [ = 0 = J, we will take —.J as the guard, call the invariant L, and
proceed:

CL=1<kAupP\{I}AK-

[:=k;
do -J —
as, l: [=J , L, 1 <l <
od
C oas: [~J AL, LI\lo1]]; (iv)
[:=lo1.

In (iv), we have met the pattern of (ii) again, this time decreasing. (It is not
strictly speaking in the form of our simple ‘iterate down’, because the guard is not
just [ # 0. But they have many features in common.)

To make progress we must now, at last, expand our abbreviations to reveal in
more detail what we have to work with: Figure 10.1 sets them out in tabular form.
The main difference between the two is that the precondition is concerned with [,
and the postcondition with [&1. To bring the two formulae closer together, we
widen the sequence exclusions to {{©1, [} in each case, adding back a conjunct to
constrain P[/© 1] in the precondition, P[l] in the postcondition. Doing that, and
some simplification, results in Figure 10.2. (See Exercise 10.2.)

Comparing the four conjuncts one-by-one between pre- and postcondition, we
find:

1. The first in the precondition implies the first in the postcondition.

2. The second conjuncts are complementary with respect to [ and [ &1, sug-
gesting a swap.

3. The third conjuncts are the same, even if we swap.
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0<I<k

Pliol] > P[]

up P\{l©1,1}

Pr(le1) < Plel] < PL(I+1)

0<I<k+1
Plle1] < P[]
up P\{l©1,1}
Pt(lel) < P[] < PL(I+1)

precondition

postcondition

Figure 10.2 Rewriting of Figure 10.1.

4. The fourth conjunct in the precondition implies the fourth in the postcondi-
tion if we swap.

So ‘swap’ it is: we exchange elements [©1 and [ of P, and that is accomplished
by exchanging them in as:

(iv) C Swap (as,l61,1) .
That leaves only the definition of Swap itself.

10.6 Assignment to sequences

In many programming languages, Swap (as,!©1, 1) would be written
as[l©1], as|l]: = as[l], as[l©1]

in spite of there being expressions on the left of assignment. In general, what is
meant by as[i]:=F is

as:=as[i:=E] ,

where as[i : = E] is the sequence got by replacing the i** element of as by E. (Recall
Section 9.5.3.) It is defined as follows:

Abbreviation 10.1 sequence assignment For any sequence as, if 0 < 7,5 < #as
then

as[fi:=FE]|j] & E when i=j
as[j] when i #7j.

Sequence assignment extends to multiple indices as in Swap: we have

Swap (as, 161,1)
= as:=as[lO1,l:=as[l], as[lO1]] . (v)
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10.7 Removing the local invariant

All now is code except the local invariant A = bag as. To remove it, we must check
that every command in its scope maintains it. Since the only assignment made to
as is the one above, the swap, and clearly cannot violate the invariant A = bag as,
the local invariant can be removed, finally, leaving code.

10.8 Exercises
Fz. 10.1 ©  Explain the introduction of (i). What laws are used?

FEz. 10.2 O Recall Figure 10.2, rewritten from Figure 10.1. Why are the follow-
ing true?

1. In the precondition, P1] £ P[l] can be replaced by P[l©1] > P[I].
2. In the postcondition, P[l© 1] < Pl can be replaced by P[l©1] < P[I].
3. In the precondition, P[l] < P|(l + 1) is not needed.

Hint: Use the other conjuncts too.

Ez. 10.3 Use sequence assignment 10.1 and Figure 10.2 to check that (iv) C

(v).

Ex. 10.4 © Replace the guard —J with code. Hint: Use the invariant, and
recall Exercise 10.2.

Ex. 10.5 © Here is the inner iteration of Insertion Sort:

do (I #0) A (as[le1] > asl]) —
as:=as[lo1,1:=asll], as[l ©1]];
l:=161

od .

Note that the value of as[l] is the same on each iteration. We can ‘tune’ the
algorithm to take advantage of that:

= var t : Z-
t:=asll];
do (I #0)A (as[lol] > t) —
as:=as[l:=as[lE1]];
=101
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On each iteration we avoid two array index operations and one
assignment.

Give the invariant for the tuned iteration. Hint: Consider the expression P[l:=t].

Why must the local invariant A = bag as have been removed before the program
is changed as above?

Ez. 10.6 © Modify the predicate up so that it expresses strict order: moving
from lower to higher indices must strictly increase the corresponding elements. (In
other words, in the sorted sequence there may not be repeated elements.)

Why doesn’t our development go through with the new definition? Find precisely
the step that is in error.

Ezx. 10.7 Binary search You have a sorted sequence as of integers, and must
find the position ¢ of a given value z in it. If z is not in as, then ¢ should index
the least element of as greater than z, if any. Here is the abstract program:

var as :seqy Z; v :Z; i: N,
and up as-
i [asTi <z < asli] .

Refine it to code; it should take time proportional to log N to execute. Hint: Recall
Chapter 7.

FEx. 10.8  As for assignment to sequences, for relation r we allow an abbreviation
for r:=r[s:=t] — we just write

rls]:=t.

Similarly r[ss]: =t abbreviates r:=r[ss:=t].

Now suppose that g[s| equals some constant ¢ for all s : S (hence dom g = 5).
How could f:=f @ ¢ be written in the style of f[?]: =77

What is the effect of f[{}]: =17

Ez. 10.9 Iterate down Show that, provided 0 < N,
as,k: [k =N, I, k=0

Cdok#0—
as: [0 <k < NAT, Ik\k—1]];
k:=k—1
od .

Where precisely is 0 < N used?
Fz. 10.10 ©  Why aren’t iterate up and iterate down made into laws?

Ex. 10.11 ©  In Exercise 10.9 the statement k: =% — 1 appears in the body of
the down iteration. Shouldn’t it be k: =k &S 17
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Chapter 11

Procedures and parameters

For any programming problem other than the very smallest, the size of the de-
velopment will in itself require careful management if we are not to find that a
rigorous approach is more trouble than it is worth.

One of the most basic ways of controlling size and structure in programming is
the use of procedures: a procedure is defined in just one place, but used in many.
For us, with our broader perspective allowing abstract programs as well as code, we
will find procedures convenient for avoiding repeated developments: a specification
whose body is a specification may be refined in just one place, but used in many.

There are many advantages of such economy. One is that the structure of the
program is more clearly revealed, since sections of identical purpose are clearly
labelled as such. Another advantage is that an implementation can save space
(perhaps at the expense of some time) by keeping only one copy of the machine
code.

But the most significant advantage for us is the one mentioned above. Without
procedures, the refinement of a repeated specification must be carried out at its
every occurrence; that at the very least involves a lot of copying. With procedures,
refinement of the declaration alone gives ‘automatic’ refinement of all its calls.

The basic principle is that if a text is repeated many times in a program, the
program may be improved by naming the text and then using the name many times
instead. The association of a name with program text is procedure declaration. The
use of the name to stand for the text is procedure call.

If a text is repeated not identically, but with systematic variation — say a
renaming of its variables — then there still may be possibilities for reuse of a
single declaration. We can use substitution, which allows a ‘reference copy’ of a
program text to be adapted to slightly differing uses. When substitution is applied
to procedures, we have what are usually called parametrized procedures.

In this chapter we look first at procedures, then substitution, and finally the two
together: parametrized procedures.
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11.1 Procedures without parameters
11.1.1 Declaring procedures

The basic declaration is extremely simple: a procedure is declared by associating
a name with a program fragment, and the fragment is then called the body of the
procedure. For declarations we use the syntax

procedure N = prog ,

where N is the name of the procedure, and prog is its body. Like the declaration
of ordinary variables (for example var declarations), procedure declarations are
made within a local block that indicates their scope. There are no restrictions on
what may be declared a procedure, or where.

11.1.2 Why one bothers

Suppose we are given three integers p, ¢, r, and are to sort them into increasing
order. We might try

pSq=sr
”j% q, TJ] = [Lp(]a qo, TOJ]

C p,g:=plgq,pUg;
q,r:=qllr,quUr;

p,q:=plhig,plq,

b,q,T:

which is effectively Insertion Sort specialised to three elements. (Note the | p, ¢, r| =
| po, @, 70| corresponding to our more general A = bag as of Chapter 10.)

Because the first and third commands are the same, we introduce a procedure
(in the spirit of this chapter) and continue the development:

C procedure Sort = p,q:=plq,pLlq- (i)
Sort;
q,r:=qlMr,quUr;
Sort .

As for var declarations, we can write the declaration as a decoration, and add the
block brackets, later, when we collect the code.

Having defined the procedure, we can leave until later the development of its
body. When finally that moment comes, and assuming for now that U and M are
not code, we might conclude with

(i) Eif p>gthenp,g:=¢,pfi.
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|[ procedure Sort

~

= if p > gthenp,q:=gq,p fi-
Sort;

q,r:=qlMr,quUr;
Sort

Figure 11.1 Procedure call

if p > q then p,q:=q,p fi;
q,r:=qlr,quUr;
if p>gqgthenp qg:=¢q,pfi

Figure 11.2 Procedure removed from Figure 11.1.

The code resulting from those refinements overall is shown in Figure 11.1, where
the middle assignment ¢, r:=- .- stands tantalisingly untouched. We shall return
to it.

All the above can be undone if we replace every occurrence of a procedure name
by its text.! Applied to Figure 11.1, the result is Figure 11.2, where it is clear how
the refinement of a procedure body (in one place) has in effect refined its (two)
calls.

11.1.3 Variable capture

When declaring a procedure, or removing it, it is essential that the movement of its
text — between point of call and point of declaration — does not move variables
into or out of the blocks in which they are declared. The following will not do, for
example:

[var p-p:=p+1]|
C? procedure Inc = p:=p+1-
|[ var p - Inc ]| .

!That technique, known as the Copy Rule, comes from the definition of the programming
language ALGOL-60.

© Carroll Morgan 1990, 1994, 1998
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Moving p:=p + 1 out of the block |[ var p--- in which p is declared (out of
‘scope’) results in code that increments a different p altogether: the reference to p
originally is within the local block, but in the ‘refined’ program, the reference to p

is outside the local block. We see later that parametrization can avoid that kind
of difficulty.

11.2 Substitution by value

Now we return to the problem of the second command in Figure 11.1, which looks
so much like the other two. What we need is a way of altering Sort systematically,
so that it affects ¢ and r rather than p and ¢. Such alterations can be made by
substitution, and we will examine three kinds: by value, by result, and by value-
result.

Underlying all three substitutions is the notion of simple substitution of one
variable for another. Section 11.8 explains why, simple though it is, it cannot be
used directly in programming.

Our first kind of substitution, by value, is used in situations where the code
we have involves some variable f, say, but we would like to replace the f by an
expression A. For example, we may have a command

ri=y/f (11.1)

that assigns to r the square root of f — but really we would like the square root
of 2 instead. Substituting 2 by wvalue for f in (11.1) will get us what we are after,
because (as we shall soon see)

(r::ﬁ)[valuef:]R\Q] = r:=V2.

(Our choice of R for the type of the parameter is fairly arbitrary here: it has 2 as
an element, and the operation 4/ is defined for it.)
In general, we speak of replacing the formal parameter f (a variable) by the actual

parameter A — and provided A itself contains no f, we can define prog[value f :
T\ A] to be

|[ var f: T-
f=A4
prog

Il

The type T of f is used, just as any other type declaration would be, for subsequent
refinement steps involving f within the procedure body.

If A does contain f (which is very common), then we must go to just a little
more trouble, to avoid capturing the f in A with the var f declaration. We use a
simple substitution to change the f in prog to some new local variable [, say. In
that case, we would have
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[ var [: T-
[:=A,;
| prog[f\l]

The [f\[] is a simple substitution, replacing all occurrences of f by the fresh local
variable [. (‘All’ means occurrences on the left of assignments as well as on the
right, and 0O-subscripted (initial) variables as well.)

If for example prog is s : = n?, but we need the square of n + 1 instead, we might
use

(s:=mn?)[value n : N\n + 1]

which, by the above, is

[ var [: N
[:=n+1,
s:=1?

and that, in turn, equals s:=(n + 1)%
Note that both ‘obvious’ alternatives to using the fresh variable would be wrong;
the first,

|[ var n:N-
n:=n++1;
s:=n?

Il

improperly captures n so that the resulting code finds the square of one more than
an uninitialised local variable. The other alternative, just

n:=n++1;
s:=n?,

indeed finds the square of n + 1, but changes n in the process — something that
the desired s:=(n + 1)? does not do.

11.3 Procedures with parameters

Our principal use of substitution will be when calling procedures whose bodies are
not quite what we want. Suppose we have two procedures, for example, one for
finding square roots, and one for finding squares:

r:=+/f
5=

n? .

procedure Sqrt
procedure Sqr

> 1b
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Then, as we have seen, Sgrt[value f : R\2] assigns to r the square root of 2, and
Sqr[value n : N\n + 1] assigns to s the square of n 4+ 1. Since we are likely to use
those procedures more than once (why else declare them?), and we do not want
to write [value f : R\--- or [value s : N\--- each time, we use the following
syntax instead. The ‘substituted for’ part of the substitution is written with the
procedure body, as in

procedure Sqrt (value f : R) = r:=./f

Sqrt (2)
and

procedure Sqr (value n:N) = s:=n

Sqr (n+1) .

(It is no coincidence that these now look like conventional procedure calls.)
To find out now what exactly is meant above by Sqr (n + 1), for example, we
could reason

Sqr (n+1)
= “parameter declaration with procedure”
Sqr[value n : N\n + 1]
= “body of Sqr”
(s:=n?)[value n : N\n + 1]
= “definition of value substitution”
[ var [:N:
l:=n+1,
s:=1[?
|

= s:=(n+1)%.

That is the reasoning which forms the bedrock of our treatment of procedures
and parameters — but in practice we need not always involve ourselves in quite so
much tortuous detail.

11.4 Setting out refinements to procedure calls

Our examples so far have shown the effect of a substitution on a given procedure
body. In practice, we will need to go in precisely the opposite direction, setting
out our refinements in this fashion:

s:=(n+1)? (i)
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C|[ var [ :N.
l:=n+1,

J

C “assuming declaration Sgr (value n: N) = s:=n
Sqr (n+1) . (ii)

Command (i) is where we start; and given a procedure declaration as shown, we
finish with Sgr (n+1). The intermediate step is precisely the form of a substitution
by value of n + 1 for n, and it is that whole block that is refined to Sgr (n + 1).

To help with setting refinements out that way, we can make the move from (i)
to (ii) in a single step, thus avoiding having to deal with the intermediate local
block explicitly. We have for example

Law 11.1 value assignment Given a procedure declaration that refines

procedure Proc (value f : T) = w,f:=FE,7,
we have the following refinement:
w:=E[f\A] C Proc (A) .

The actual parameter A may be an expression, and it should have type 7. (If it
does not, the refinement remains valid but subsequent type checking will fail.) As
usual, variables w and f must be disjoint.

a

That the procedure body in Law 11.1 may alter f may seem odd for a value
parameter; but such alterations have no effect outside the procedure, since f is not
in the frame of the left-hand side of the law.

Independently of procedures, Law 11.1 could have been written

(w,f:=FE,?)[value f : T\A] = w:=E[f\4],

but as we shall usually be using parameters and procedures together, we give the
combined form in the law.

In speaking above about ‘a procedure body that refines’, we mean one whose body
is a refinement of w,f:=F,?. One such refinement is w, f:=F,7 itself; another
is w:=FE (forgoing the opportunity of changing f); yet another is w, f:=E, F for
any expression F whatever.

Our squaring example above would now be set out (assuming the same procedure
declaration)

s:=(n+1)?

= s:=(n?)[n\n +1]

C “value assignment 11.17
Sqr (n+1) .
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skip T (p:=gq)[value ¢\p]
p:=r C (p:=q)[value ¢\r]
p:lp=p] E p:[p= q|[value ¢\p]
skip C (choose p)[value p\p]

Figure 11.3 Value substitutions

Note that we have used the fact that s,n:=n%7? C s:=n2
A similar package exists for specifications: it is given by

Law 11.2 value specification Given a procedure declaration that refines

procedure Proc (value f: T) = w,f: [pre , post] ,

with post containing no f (but possibly fy), the following refinement is valid:

w: [pre[f\A] , post[fo\4o]] C Proc (A),

where Ay is AJw\wp).
O

As in value assignment 11.1, the procedure body can alter f, and here is an example
of where that is useful. Suppose we have a procedure declaration

procedure Fact (value n:N) = p,n: [0<n, p=mnl] ,

which we might have used to make the following refinement steps:

{0< g} p:=(¢go1)!

p:0<q, p=(g01)]

p: [(0 < n)[n\(go1)], (p = no!)[no\(90 ©1)]]
“declaration of Fact”

Fact (¢o1) .

et

Later, we could return to Fact itself and, since n is in the frame, develop the
procedure body as follows:

p,n: [0<n, p=nl
Cp:=1
don#0—=>p,n:=pxn,nolod.

In Figure 11.3 are some other examples of value substitutions.
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11.4.1 Substitution by result

Useful though it is, our substitution by value cannot by itself take us from Proce-
dure Sort to the remaining assignment ¢, r:=¢ M r, ¢ L r. The procedure assigns
to p and ¢, but we want an assignment to ¢ and r — and value substitution cannot
change that.

Substitution by result is complementary to substitution by value: it takes a
value ‘out of’ a procedure rather than ‘into’ it. Thus, for example, if we want
to adapt our assignment r:=+/f to assign to s rather than to r, we could use
(r:=+/f)[result r : R\s]. That follows from the general form of substitution by
result, given by defining prog[resultf : T\a] to be

[ var [: T-

prog[f\];
a:=1

Il

The actual parameter this time must be a simple variable, since it is assigned to.
(That is why we write a, rather than A as before.) For r:=+/f, the local block
would be

|[ var

[:R-
Vi
=

& T~

Il

which equals s:=+/f, just as we hoped.
As with substitution by value, however, we can avoid setting out the intermediate
local blocks (if we want to). The law for assignments is

Law 11.3 result assignment Given a procedure declaration that refines

procedure Proc (vesult f : T) = w,f:=FE,F ,
with f not occurring in £ or in F', we have the following refinement:
w,a:=E,F T Proc (a).

Variables a and f need not be different from each other, but w must be disjoint
from both.
a

The reason that f cannot appear in the expressions F, F'is that they would then
depend on the initial value of f; and glancing at the local-block form of substitution
by result shows that the procedure body can have no access to those initial values.

For procedures whose bodies are specifications, we have this law:?

2See also Ex. 11.8.
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skip T (p:=gq)[result p\(]
r,qg:=q, 7 T (p,q:=gq,r)[result p\r]
q: [q#0] T p:[p#0][result p\q]
¢:[¢=a] T p:[p= q]result p\q]

Figure 11.4 Result substitutions

Law 11.4 result specification Given a procedure declaration that refines

procedure Proc (result f: T) = w,f: [pre , postla\f]] ,

with f not occurring in pre, and neither f nor fy occurring in post, we have the
following refinement:

w, a: [pre , post] T Proc (a) .

Again, variables ¢ and f need not be different from each other, but w must be
disjoint from both.
(I

With Law 11.3, the square root example would be done in just one step:

s:=+/T

C “result assignment 11.3”

Sqrt (s) .

Figure 11.4 gives further examples of result substitutions.

Note that in all substitutions, if the formal parameter f is actually a list then
it cannot contain repeated variables. That is because the same restriction applies
to the simple substitution [f\a] from which the others are constructed: [z, z\0, 1],
for example, is meaningless. Since in result substitution the assignment a:=f
appears as well, also the actual parameters must be distinct from each other; but
that restriction does not apply to value substitution.

11.5 Multiple substitutions

An obvious possibility with the square root procedure is now to parametrize both
its ‘input’ and its ‘output’ — then it would be much more useful, and we could
for example realise s: =+/2. We do that by putting our two kinds of substitution
together: in this case, the effect of [value f : R; result r : R\2,5] on r:=+/f
would be
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[:=2;
m: =1
s:=m

where the simple substitution used was [f, 7\[, m]. That means our general square-
root-finding procedure might be declared

procedure Sqrt (value f : R; result r: R) = r:=/f,

and we would write just Sgrt (2, s) to invoke it as above.

Although there are laws (of course!) for dealing directly with multiple substi-
tutions, they tend to be more trouble than they are worth: they simply pile up
the various simple substitutions in the separate laws. For multiple substitutions,
therefore, we will stick with the local-block form of development.

11.6 Substitution by value-result

We still have our original ¢,r:=¢ M r,qU r to deal with, and at this stage it is
tempting to suggest declaring

procedure Sort (value p,q: T;result p,q: T)
so that Sort (q,r, ¢, r) would mean

[ var [,m : T

l,m:=p,q;
[,m:=1MNm,lUm;
p,q:=10,m

Il

In doing so, we would be brushing aside the feeling that somehow we should be
declaring four local variables, one for each formal parameter, rather than just two.

In fact for situations like the above, we use our third kind of substitution, value-
result. The local block above would then result from declaring

procedure Sort (value result p,q: T) ,
and using Sort (q,r). In general, prog|value result f : T\ a] means

[ var [: T-
[:=a;

prog[f\I];

a:=1
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p:=r L (p:=q)[value result ¢\r]

r:=q C (p:=q)[value result p\r]

q:=p L (p:=q)[value result p, ¢\q, p]
p:(r>0,p=mnr] C p:[¢>0, p= ql[value result ¢\r]
r[¢g>0, r=q] C p:[¢>0, p= ql[value result p\r]
rifs>0, r=s] C p:[¢g>0, p= q[value result p, ¢\r, s]|

Figure 11.5 Value-result substitutions

It is indeed a combination of value and result.

As usual, there are laws for the special cases in which the procedure body is an
assignment or a specification and, as earlier, we assume that the variables w are
distinct from f and a. Here is a law for assignments:

Law 11.5 value-result assignment Given a procedure declaration that refines

procedure Proc (valueresult f: T) = w,f:=E,F |
we have the following refinement:
w,a:=E[f\a], F[f\a] C Proc (a) .
O
And for specification-bodied procedures we have

Law 11.6 value-result specification Given a procedure declaration that refines

procedure Proc (value result f : T) = w,f: [pre, post[a\f]] ,
with post not containing f, we have the following refinement:

w, a: [pre[f\a] , post[fo\a]] T  Proc (a) .
(I

Figure 11.5 gives examples of value-result substitutions.

11.7 Syntactic issues

We follow common practice and use parentheses (---) for procedure parametriza-
tion, reserving brackets [- - -] for substitution. Formal parameters (that is, in the
declaration, or on the left of the ‘\’) will be separated by *;" except that we allow
for example (---value z; value y---) to be written (---value z,y---), and so
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|[ procedure Sort (value result z,y : T')

~

= ifz>ythenz y:=y,z fi-
Sort (p, q);

Sort (q,1);
Sort (p, q)

Figure 11.6 Parametrized procedure calls

on. Actual parameters (at the point of call, or on the right of the ‘\’) are as be-
fore separated by ‘,”. The correspondence between actual and formal parameter is
therefore by position.

The formal parameters, with their types, act as local variables for the procedure
body. Those types should be chosen so that an assignment taking actual to formal
parameters (for value and value-result), or taking formal to actual parameters (for
result and value-result), would be well-typed.

Returning finally to our original example, we have Figure 11.6, in which we
have changed the name of the formal parameters. (Such name changes make no
difference as long as variable capture does not result.) Note that all three calls
must be parametrized.

11.8 Substitution by reference

The most common substitution techniques provided in programming languages are
call by value and call by reference.

For variables, substitution by reference is identical to simple substitution, and
it is dangerous.

Consider the following:

z:=0

z:=1; z:=0

(y:=1; z:=0)[reference z,y\z, 2|

procedure Wrong (reference z,y) = y:=1; z:=0-

Mrt i

Wrong (z, z) .

(We have omitted types.)
Now if we refine the body of Wrong as follows, the resulting program is equivalent
to z:=1 (see Exercise 11.5):

Wrong C z:=0; y:=1.
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Our difficulty is due to aliasing: the substitutions in each case have identified two
variables that were distinct. This can occur explicitly — as in [reference z, y\ z, 2|
above — or implicitly as in the substitution (a:= f!)[reference f\a].

Aliasing is permitted with any of the substitutions of Section 11.2 however,
and that is why we use them: there is no need to check. The problem is that
substitution by reference is often more efficient, and certainly is more common.?
Fortunately, we have the following:

When aliasing is absent, substitution by reference is identical to sub-
stitution by value-result.

Thus our techniques are available in most practical cases.

11.9 Exercises

Ex. 11.1 O Simplify the following:

. (a:=f+1)[value f\q]

(f: —a+1)[result f\al

(f: )[value result f\a]
( )[value result f\a]

Ez. 11.2 O Supply the missing substitution(s):

1. n:=(n+ 1) C (f : = a!)[value ?; result 7\7, 7]
2. a:> a C (a:> b)[value 7\7]

3. i [x #0, z=1/1)
C ¢[p#0, pxq=1][value 7; result 7\?,7]

Fz. 11.3 ©  Assuming the procedure declaration
procedure Sqrts (value a : R; result b : R) = b: [0 < a, b? = d]
is in scope, show that the following refinement is valid:

T [0 <z, z’= xo} C  Sgrts (z,z) .

Ex. 11.4 O We noted that ‘procedureless’ programs can be recovered by replac-
ing procedure names with their bodies. Consider the following case:

|| procedure One = a:=1-|[var a- One |||
=?|[vara-a:=1]
C skip .

3In Pascal and Modula-2 it is call by var, for example, and it is the default in FORTRAN. In
C, however, call by value is used; but the effect of call by reference is regained by using pointers.
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Explain why the equality is dubious. Argue instead that the correct result is a : = 1.
Hint: Rename the local variable.

Ex. 11.5 Verify that the program of Section 11.8 is equivalent to z:=1 by
removing the procedure Wrong from it.

Ex. 11.6 Show that

p<qg<r
ﬂp,qarﬂ = |LP0,(]0,7“0J]
C p,q:=plig,pUg;
q,r:=qllr,quUr;
p,q:=pllg,pUgq.

b,q,r:

Hint: Recall Insertion Sort.

Ex. 11.7 Q© What is the invariant needed for the refinement in Section 11.4 of
Fact to the iteration

p:=1
don#0—>p,n:=pxn,nelod?

Fz. 11.8 ©  Show that the following is equivalent to Law 11.4:

Given a procedure declaration that refines
procedure Proc (vesult f: T) = w,f: [pre , post] ,

with f not occurring in pre, and neither a nor fy occurring in post, we
have the following refinement:

w, a: [pre , post[f\a]] T  Proc (a) .

Again, variables ¢ and f need not be different from each other, but w
must be disjoint from both.

Under what circumstances would you prefer one over the other?

© Carroll Morgan 1990, 1994, 1998



Chapter 12

Case study: Heap Sort

Our earlier sorting case study, Insertion Sort in Chapter 10, took time proportional
to the square of the number of elements sorted. The code developed in this chapter,
Heap Sort, does considerably better: if N elements are to be sorted, then the time
taken is proportional to N log N.

That alone is worth the extra trouble needed to develop Heap Sort; but it is
also worth seeing how radically different code can be reached from the same initial
specification.

12.1 Time complexity of code

The outer iteration of Insertion Sort is executed N times: thus its inner iteration,
on average, is executed k/2 times for each k from 0 to N — 1. Overall, therefore,
the code performs this many comparisons (one for each inner iteration):
1
5(0+1+2+---+N—1) = N(N-1)/4.
Thus if the sequence is doubled in length, the time taken to sort it is roughly
quadrupled.

In general, the number of operations required to execute code is expressed as
some function of the size N of the data given to it. For two such functions f and

g, we write f < g if there are two numbers M : N and ¢ : R" such that for all
N>M,

fN<cxgN.

Put informally, that reads ‘up to a constant factor (¢x), the function f is less than
or equal to g for sufficiently large arguments (> M)’. We write f > g if g < f, and
f ~ gif bothf <gandf > g, and finally f < g if f < g but f 2 g. Thus in this
case we have

N(N —1)/4~ N*,
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118 Case study: Heap Sort

and we say that Insertion Sort has N2, or quadratic, time complexity.
Heap Sort has complexity N log N, and is therefore asymptotically more efficient
than Insertion Sort, since

NlogN < N? .

Even better, it can be shown that N log N is the lowest complexity possible! for
sorting sequences: in that sense, Heap Sort cannot be improved. Its complexity is
optimal.

With that background, we now present our abstract program, exactly the same
as for Insertion Sort:

var as : seqy Z; con A;
and A = bag as-
as: [up as].

But our development is completely different.

12.2 Heaps

Heap Sort achieves its better-than-quadratic N log N complexity by sorting a bal-
anced tree, rather than a sequence, of values. That is where the log N comes from
in its complexity N log N: a balanced binary tree of N nodes has depth [log N].
(The N factor comes from the fact that it has N nodes.)

Surprisingly, it is possible to lay a balanced tree out entirely within our given
sequence as. The arrangement is easily observed in a sequence numbered from 1:
in that case, element as[i] is the parent of element as[j] exactly when i = j + 2.
And element asi] is an ancestor of element as[j] exactly when (EI kei=j+ 2’“).
Child and descendant are the complementary terms; note that an element is both
an ancestor and a descendant of itself.

Our sequences begin at 0, and so we define a relation ~ as follows: for 7,7 : N,

i~j = (Fk:Nibl=(+1)+25).

The relation is illustrated in Figure 12.1.

We say that a sequence as is a heap whenever the balanced binary tree within
it is ordered so that ancestors are no smaller than their descendants: for that we
write hp as, where

hpas = (Vi,j: 0>#as - i~ j = as[i] > as[j]) .

That means incidentally that for any non-empty heap as, its first element is its
largest: thus hd as > tlas.

IBetter performance is possible, however, if several computers are used at once.
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©
®/ \@
@/ \@ @/ \@
YN YN YN YN
@) (©) et cetera ...

Figure 12.1 Parent—child relation in a heap

12.3 Shrinking a heap

Our strategy is to form the sequence into a heap, and then sort that; thus the first
step is

C as: [hp as]; (1)
as: [hpas , upas| . (ii)

Note that we have diverged immediately from the path taken earlier with Insertion
Sort. Motivation for it is the suspicion that sorting a heap is faster than sorting a
sequence; naturally we hope that our advantage is not eaten up by the cost of (i),
the making of the heap in the first place.

Since (ii) has more detail, we work first on it. The operational idea is to pluck
successive greatest elements from the root of the heap, at as[0], reforming the heap
each time. (There are N elements, and each reforming of the heap takes no more
than log N comparisons.)

Using the form of (ii) as a guide, we bring its pre- and postcondition together
by introducing up on the left and hp on the right:

(ii) T as: [hpasTN Aupas{N , hpastO A up as]0] .

Rushing into an iteration here may be premature, however. The specification above
suggests shrinking the heap towards 0, leaving sorted elements in a suffix behind it.
That suffix should contain elements which need not be moved again: they should
be in their final positions. We add that to the invariant, just to be sure,? and now
proceed

2That sounds a bit imprecise: it means only that if we had not added it, we would have been
stuck later on. It does not mean that if we had not added it we would have developed incorrect
code.
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C fnis = as?i < asli Aupasli-
as: [hpastTN Afn N | hp ast0 A fn 0]

C var i:N-
1:=N;
as,i: [i =N, hpasTi Afni, i =0] <
C “iterate down”
doi#0—
=161,
as: [t < N ANhpast(i+ 1) Afn(i + 1), hpasti Afni] 4
od .

In the precondition we have fn(i 4+ 1), and in the postcondition we have fni:
therefore we need to place the maximum as[0] of asf(i + 1) at index i. But as[i]
must go somewhere — perhaps to index 0. Unfortunately, that does not establish
the remaining conjunct hp asti: the new as[0] is more likely to be the minimum
than the maximum of afi !

As for Insertion Sort, we need to say ‘as is ... except at 0". Just hp(tl as) will
not do, since the ancestor relation in tl as is quite different. Thus we must define
a partial heap as follows: for s C 0—N,

phs = (Vi,j:s-i~j= asli] > as[j]).

Remember that 0— N does not contain N (p.79), and note that ph 0—N = hp as.
Now we can proceed by swapping elements ¢ and O:

C Swap (as,0,1);
as: [ph1—i, fni, ph0—i] . (iii)

Specification (iii) requires us to ‘repair the heapiness’ of as[0—i], without disturb-
ing the elements at ¢« and beyond.

(It is that last step that needed fni in the invariant rather than the weaker
up asli: having only up as)(i + 1) is not sufficient for a Swap (as, 0, i) to establish
up asli even when as[0] > ast(i + 1).)

12.4 Establishing the heap

Now we return to (i): in fact specification (iii) above suggests an approach, since
it extends a heap towards lower indices. We are further encouraged by the fact
that ph(N + 2)—N is identically true (since there are no ancestors to consider):
any sequence is ‘half a heap’ already. So we proceed

(i) C varj:N:
ji=N+2;
as,j: [j=N+2, phj—>N, j=0] <

© Carroll Morgan 1990, 1994, 1998



Procedure Sift 121

C “iterate down”

doj#0—

Ji=j0lL

as: [j < N+2Aph(j+1)—=N, phj—N] (iv)
od .

Specification (iv) looks very much like (iii); and since fn N is identically true, we
can bring the two closer still, as follows:

(iv) C as: [ph(j +1)—=N, fnN |, phj—N] . (v)

We are now ripe for a procedure.

12.5 Procedure Sift

The similarity of Specifications (iii) and (v) suggests a procedure defined as follows:

procedure Sift (value [,h: N) =
as: [ph(l +1)—h , fnh , phl—h] ,

and that gives the following refinements immediately:

We have used value substitution for both parameters.

Now of course we still must develop Sift itself; but at least we need do that
only once, and not twice as would have been necessary had we treated (iii) and (v)
separately.

The invariant fn h of Sift suggests that we confine our attention to the prefix
0—h of as, just leaving the suffix from h on alone. The pre- and postcondition
suggest that we need to say “as is a partial heap [—h at some £k as well”, and so
we define

lok
hi &

(Vi:l=h-i~ k= as[i] > as[k))
(V5 : l=h -k~ j = as[k] > as[j]) ,

~
~

so that lok means that element k is correctly ordered with respect to elements
below it, and hi k£ means the same for elements above it.
Then we continue as we did for Insertion Sort:

Sift
- var k£ : N
= J = ph(l—h —{k}) Alok Afnh-
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k:=1,
do —hik —

as,k: [=hik , J, ky <k <h] <
od .

Now if = hi k holds, we know two things:

1. as[k] has a child in [—h (otherwise, hik would be vacuously true); hence
2k+1 < h.

2. as[k] is less than one of its children; certainly it is less than the greater of its
children.

Accordingly, we make our final refinement by swapping as[k] with the greater of
its children, say as[m]. Since that establishes ph(I—h —{m}), we also assign m to
k (thus increasing &, but not beyond h).

C var m : N-
if2k+2=h—->m:=2k+1
| 2k+2<hAas2k+1]>as2k+2] > m:=2k+1
| 2k+2<hAas2k+1] <as[2k+2] > m:=2k+2

fi;
Swap (as, k, m);
k:=m.

That concludes the development of Sift, and thus of Heap Sort itself.

12.6 Exercises

Er. 12.1 Prove that hp as = hd as > tlas, if as is not empty.

Ex. 12.2 O Use the invariant J to code the guard —hik. Hint: Recall Exercise
10.4.

FEx. 12.3  Make Sift more efficient, as we did for Insertion Sort.

FEz. 12.4 O  Show that if
lim (fFN/gN) =0,
N—oo

then f < g.

Fz. 12.5  Show that Nlog N < N2,

FEz. 12.6  Show that log, N ~ log, N for any logarithmic bases a, b > 1.
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Ex. 12.7 Prove that polynomial complexity is always better than exponential
complexity by showing that, for all ¢ > 0 (no matter how large) and all b > 1 (no
matter how small),

N¢ < bV .
Hint: Use ’'Hopital’s Rule.

Fz. 12.8 ©  The conventional notation for f < g is f = O(g), and for f = g
it is f = Q(g). Finally, f &~ g is written f = O(g). What makes those notations
unusual? Hint: Consider the properties of equality.

How could the conventional notations be improved? Hint: Suppose O(f) were a
set of functions; how would f < g be written then?

Ez. 12.9  Give two functions f and g such that neither f < g nor g < f.

Ex. 12.10 © In spite of its optimal complexity, Heap Sort is not the fastest
sorting code. (Quick Sort, for example, is considerably faster in most cases.) How
can anything be faster than optimal?

Ezx. 12.11 Bubble Sort Using the definitions of this chapter, complete the fol-
lowing development:

as: [up as]
C var i :N
i:=N;

as,i: [t =N, fni, i =0] .

Hint: Imagine Heap Sort with no heap: in the inner iteration, you must neverthe-
less establish asti < as[i].
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Chapter 13

Recursive procedures

Recursive procedures are those that ‘call themselves’, and the following factorial
procedure is perhaps one of the best-known examples:

procedure Fact (value n : N)
=ifn=0—-f:=1

[ n>0—
Fact (ne1);
f:=fxn
fi.

If we know that Fact (n © 1) assigns (n ©1)! to f, then we can deduce that Fact (n)
assigns n! to f; and to know that Fact (n © 1) assigns (n ©1)! to f we must know. . .

In this chapter we see how to develop recursive procedures directly from their
specifications (without the ‘...” above). The principal feature, beyond what we
know about procedures already, is the use of a variant expression to ensure that

the recursion terminates properly. It is essentially the same technique we used in
iterations.

13.1 Partial correctness

Here is how we might develop the factorial procedure above, using a straightforward
case analysis into an alternation:

procedure Fuct (value n:N) = f:=n!
C “the type N of n gives cases n =0 and n > (”

ifn=0—{n=0}f:=n! (i)

Ein>0—>{n>0}f::n! (ii)
(i) C “0l =17

f:=1
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(ii) T “following assignment 3.5”
fin>0, fxn=nl]; q
fi=fxn
C f:[nel120, f= (o)
C? “value specification 11.2”
Fact (no1) .

Only the last step is dubious, using the specification of Fact within its own devel-
opment — yet clearly we must do something of that kind for recursive procedures.
Before seeing exactly what it is, however, we should find out why we cannot accept
developments like the above just as they are. Consider therefore this alternative
development of Fact:

procedure Fuct (value n:N) = f:=n!
C?! “recursive reference to Fact”
Fact (n) .

That astonishingly short development gives the code
procedure Fact (value n: N) = Fact (n)

and — what is worse — the same strategy would ‘work’ for any procedure at all.
The reason it does not work is that we have taken no account of termination;
both versions of Fact have the effect of assigning n! to f if they terminate, but only
the first version terminates. The second recurses forever, so that any statement
about its effect on termination is vacuously true.
Similarly ignoring termination for iterations would have allowed us to argue that

f:=n! C? do true— skip od .

If that iteration terminated it would indeed assign n! to f — but it never does
terminate.

Such ‘refinements’, ignoring termination, establish what is known as partial cor-
rectness: that one program refines another ‘except for termination’. Unhelpful as it
sounds, such partial refinements (as we might call them) are useful ways of having
a quick look ahead in a development to see whether it is worth proceeding that
way! — for if one cannot reach even partial correctness, there is clearly no point
in trying the approach at all.

Our normal refinement relation expresses total correctness, however, and takes
termination into account. For that, we need variants.

IPartial correctness was the basis, in [Hoa69], of early arguments for rigour in program devel-
opment. It has the advantage that its rules are simpler; but then one gets less from them.
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13.2 Variants for recursion

The extra we pay for total correctness is that we must declare a named variant
expression for the development of any recursive procedure. In the factorial example,
it would look like this:

~

procedure Fact (value n:N) = f:=n!
C variant N is n-

In general, the effect of a variant declaration variant V is F, for name V and
integer-valued expression F, is to require that any recursive reference to the pro-
cedure be formulated as if the procedure included 0 < F < V in its precondition.
(References from outside the procedure itself, however, need not include the extra
precondition.) In the factorial example, therefore, we would have had to refer to

{0<n<N}f:=n!
or equivalently f:[0<n <N, f=nl]

at the point of recursive reference to Fact, rather than just f:=mn! on its own.
In doing so we are stipulating (as with iterations) that the variant (n) must have
decreased strictly (--- < N), but not below 0 (0 < ---), before the recursive call is
made.

In order to be able to include such an assertion, we allow the introduction of
{V = E} at the point immediately after the declaration of the variant. (Alterna-
tively, it is just included as a conjunct in the precondition, if that first step is a
specification.) The effect on the factorial development would be

C variant N is n-

{n=N}
ifn=0—{n=0}f:=n!

[ n>0—{n>0}f:=n! (i)
fi,

and in fact there is no reason it cannot immediately be distributed through the
guard of the second branch of the alternation in that same step; we would write
(instead of the above) just

C variant N is n-

ifn=0—{n=0}f:=n! q
] n>0—={N=n>0}f:=n! (i)
fi.

(Since the first branch does not lead to a recursive call, we have no need of the
variant there.) Then the development would continue as before, but this time
carrying the variant along:
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()

M

“following assignment 3.5”

i [N=n>0, fxn=nl; q
fi=fxn

fiIN>nel1>0, f=(nol)]

“value specification 11.2”

f:[N>n>0, f=nl|[value n: N\n 1]

“note that N > n > 0 is correctly placed”

Fact (no1) .

IRRIN

1M

The second, bogus, development of Fact is no longer possible:

procedure Fuact (value n:N) = f:=n!
C variant N is n-

{n=N} f:=n!

C “What now?”

The assignment cannot be replaced by Fact (n), as we did before, because the
precondition is not N > n > 0 as it must be.

13.3 A complete example

Here, as a second example, we develop a recursive searching procedure. Consider a
finite set es of type finset E, each of whose elements might satisfy a given property
p. (The elements could be integers, for example, and the property ‘is even’.) For
e : E, the formula p e means “p holds for e”.

We develop a recursive procedure which, assuming that some element of s sat-
isfies p, assigns to e one such element; the abstract declaration is

procedure Find (value es : finset E)
= e:[(Je:es-Pe) , ecesAPe] .

Our strategy is simply to choose an element e from es at random. If it satisfies
p then we are finished; if it does not, we invoke Find recursively on es with the
non-p-satisfying e removed. For conciseness, we define P es to be (Je:s-pe), a
convenient abbreviation for ‘es contains an element satisfying p’. Here is our first
step:

C variant V is #es-
e:les#{}, e € esl;
e:[V=#esNec€esAPes, ecesAPe] . q

We have moved both V = #es and P es through to the precondition of the sec-
ond command, since neither contains variables in the frame of the first command.
The precondition es # {} of the first command itself follows from the original
precondition P es.

© Carroll Morgan 1990, 1994, 1998



128  Recursive procedures

Now we have chosen an element e, and there are two cases: either e satisfies p
or it doesn’t. We treat them with an alternation:

Cifpe—efecesAPe, ecesAPel q
| ~Pe—
e:[V=#esNec€esANPesA-Pe, e€sAPe] (i)
fi
C skip .

The first branch has been easily disposed of.

Consider now the precondition of the second branch: if there is some element
of es satisfying p, but it is not e, then that element must lie in es — {e} and so
P(es — {e}). We can also strengthen the postcondition, allowing us to make the
recursive call:

(i) C e: [V >#(es—{e})AP(es—{e}), e€ces—{e} APe]
C Find (s —{e}) .

We have not bothered with 0 < #es, since set sizes are non-negative by definition.

13.4 Epilogue: recursion blocks

What we have seen above is all we need for developing recursive procedures, but
there is a special case that deserves a closer look. Sometimes the recursive pro-
cedure is declared ‘just to be able to recurse’, rather than to make the procedure
widely available. As matters stand, we have to do that in order to have a name
with which to indicate the point of recursion.

We will allow ourselves to write parameterless recursions that are not procedures
as follows:

re R - prog er ,

for some name R and program fragment prog. The effect is precisely as if R had
been declared locally, as a procedure, called once, and then forgotten about:

procedure R = prog-
I g
R

Il

If we were to develop a recursion block directly, rather than first developing a
‘temporary’ procedure as above, we would set it out as in this example:

fin:=nl?
Cf:=1
fin:=fxnl? <
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C re F variant N is n-
if n =0 — skip

l n>0={N=n>0}f,n:=fxnl? q
fi
C f,n:=fxn,nel;
{N>n>0}f,n:=fxnl? N
cC F.

Collecting the code, and collapsing the development, we can see that we have
shown

fin:=nl?
Cf:=1
re F.
if n =0 — skip
| n>0—f,n:=fxn,nol; F
fi

er ,

and it is interesting to note that, since we began developing the recursion block
only after the first refinement step, the final code is not in its entirety a recursion:
only the second half is.

In fact what we have seen above is an example of a more general phenomenon
known as tail recursion, and summed up in this equality:

do G — prog od
=re D-
if G then prog; D fi
er

Using the equality (and remembering that n is a natural number, so that we can
rewrite the guards n = 0 and n # 0) converts the above factorial program to the
more familiar

f=1
don#0—=>f,n:=fxn,n61lod.

Tail recursion is more general than ‘ordinary’ iteration, however, as illustrated
by this second equality:

loop
progl;
if G then exit fi;
prog2

end
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= re L-
progl;
if -G then prog2; L fi
er .
The loop - --exit---end construction iterates its body ‘until an exit is exe-

cuted’. The above not only makes that precise, but shows how to develop programs
of that form.

13.5 Exercises

FEx. 13.1 ©  Would Find terminate if es were infinite? Where in its development
do we use the fact that es is finite?

Ex. 153.2 O  For f,n : N, show that
f:lf=n] C Fact'(n,1),
where

procedure Fact' (value m,k : N)
=ifm=0—->f:=k
[ m>0— Fact' (mo1,m x k)
fi.

Hint: Consider f:=m! x k.

Ex. 153.3 Linear search Assuming declarations as : seqy A and ¢ : N; a : A
show that
i: [a € as = a = as[i]]
C :=0;
loop
if + > N then exit fi;
{i < N} if a = as[i] then exit fi;
ti=1+1
end

)

by refining the left-hand side to the tail-recursive code

1:=0;
re L -
if + > N — skip
[ i<N—
{i < N}

if a = as[i] — skip
| a#as[li] > i:=i+1;L
fi

er .
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Hint: Do not bother about the ‘obvious’ rewriting of the recursion block to
introduce the loop and exits as given above; concentrate on reaching the recursion-
block itself. Its specification should be i: [a € asliy = a = as]i]].

What is the point of the assumption {i < N}? Need it be there? Hint: See
Exercise 9.17 concerning undefined expressions.

FEz. 13./  Develop an iteration (rather than a recursion) from the specification
e,es: [Pes, e € esyApel ,

similar to Find in Section 13.3 except that es may now be changed. Hint: Introduce
a logical constant S to capture the initial value of the set es, and use the invariant
e€cesNes CSAPes.

Ex. 18.5 Show that

w: [inv , inv A =G|
C reD-
if G then w: [G, inv, 0< E < Ey); Dfi
er

by carrying on after this first step:

w: [inv , inv A =G|
C re D variant V is E-
w: [V=E, inv, =G| .
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Chapter 14

Case study: The Gray code

In this chapter we use our new techniques for recursion in a slightly out-of-the-way
case study, and in passing examine the issues of input and output.

14.1 The Gray code

The Gray code represents natural numbers as sequences of digits 0 or 1, but not in
the usual way. If we let the function gc : N— seq{0, 1} take a natural number to
its Gray code, then we find it has these properties:

1. As for the usual binary code,

gc0 = (0)
gcl = (1),
and for n > 2,

gcn = gc(n+2)+ (d), for d either 0 or 1.

Alternatively, we could say frgcn = gc(n + 2).
2. But gcn and ge(n + 1) differ in exactly one position, for all n.

Property 1 applies to both Gray and binary codes, with the difference being only
the choice of d. Property 2, on the other hand, applies to the Gray code alone.
Figure 14.1 lists the first few Gray codes, comparing them with the corresponding
binary codes.

The Gray code is used in applications where it is important that only one bit
changes at a time in counting up or down. We shall develop a program to output
Gray codes; but first, we examine input and output in general.
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n gen binary
0 0 0
1 1 1
2 11 10
3 10 11
4 110 100
5 111 101
6 101 110
7 100 111
8/ 11001000
911011001

Figure 14.1 The first Gray codes

14.2 Input and output

For programs using input and output we introduce two special-purpose variables
named, by convention, a and w. Their types will depend on the problem at hand,
but usually « is a sequence of input values, and w is a sequence of output values.

Input is performed by removing the first element of «, and that may be abbre-
viated as follows for any variable z:

input z = {a# ()} z,a:=hda,tla .

Testing for end of file on input is just testing for emptiness of a:
eof = a= ).

Output is performed by appending an expression F to w:
output ¥ = w:=w+ (E) .

And output may be initialised by setting it to empty:
rewrite = w:=() .

Finally note that, since input z changes « (by removing an element), programs
performing input should include « in the frame.

Our abstract program for this case study — a procedure — outputs the Gray
code corresponding to a given integer n:

procedure Gray (value n:N) = w:=wHgcn .

We are assuming in this case that w is a sequence of binary digits (thus w :
sea{0,1}).
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14.3 Isolate the base cases

Since the first two Gray codes are given explicitly, we treat them on their own,
using an alternation. Our variant (for the recursion) is n itself:

C variant N is n-

if n <2 — output n
l n>2—>{2<n=N}w:=wHgcn q
fi.

To make further progress, however, we must return to Properties 1 and 2. From
Property 2, the number of 1’s in gcn must alternate between even and odd. Let
the parity of a sequence as, written pr as, be 0 if the number of 1’s in as is even, 1
if it is odd. Thus pr gc n alternates as n increases. Since from Property 1 we know
gc0 = 0, we have by a simple induction that

prgcn = nmod2 . (14.1)

The above suggests that to calculate gc n, we could first calculate gc(n + 2) and
then use its parity to calculate the final bit d. That leads to

Cw2<n=N, w=uwyH gcn]
C “sequential composition 8.4”; con () : seq{0, 1}
w2<n=N, w=uwyHge(n=+2); (i)
w [w=Q+HHgc(n+2), w=QH gcn] (ii)
i) C{0<n+2<N}w:=wHgc(n+2)
C Gray (n+2).

To refine (ii) we need a small calculation. For a,b : N let @ @ b be the sum
(a + b) mod 2; then we have

ge(n +2) # (d) =gecn

pr(gc(n +2) 4+ (d)) = prgen
“from (14.1)”

(n+2) mod 2® d =n mod 2
= d=n+2dn.

[

Hence, with that equality, we have finally
(ii) C output (n+2)@n .
That concludes the development, which is summarised in Figure 14.2.
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procedure Gray (value n : N)
= if n < 2 — output n
l n>2 —
Gray (n =+ 2);
output (n+2)®n
fi.

Figure 14.2 Recursive Gray-code code

14.4 Exercises

Ex. 14.1 O  Continue Figure 14.1 up to n = 15.

Ex. 14.2 O The base case in recursions is often 0, but for the Gray code it is 0
and 1 together. Why?

Fz. 14.3  Develop recursive code for the following, where br n is the (ordinary)
binary representation of n:

var n:N; w:seq{0,1}:
wi=w-+Hbrn.

Of course, br itself is not code!

Fz. 14.4  Let gcb : seq{0,1} —seq{0, 1} take the binary representation of n to
the sequence gcn. For example,

geb(1,0) = (1,1).
Develop iterative code for
var n, g : seq{0,1}-
{n#(} g,n:=gcbn,?.
Ex. 14.5  Refine the following to iterative code:

var n :N; «:seq{0,1}
a,n: [-eof | gcn =« .

Ex. 14.6 O For sequence ¢, define its reverse rv g as follows:

rv() Vi

rv({e) + q) rvg 4 (e) .

Refine this program to recursive code, using a recursion block:

1

var a,w : seq F-
a,w: =7, rva .

Hint: Rewrite output first.
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Chapter 15

Recursive types

We have already seen a number of basic ways of making types for use in variable
declarations. As well as the ‘standard’ types like the natural numbers N and the
reals R, we encountered the type-constructing functions set, bag and seq that
make new types from existing ones, and we considered functional and relational
types.

In this chapter we go further, showing how to invent such structuring tools for
ourselves.

15.1 Disjoint union

The principal new ingredients of our type constructions will be disjoint union and
recursion. Normal set union forms a new set from two given sets by including in
the new set exactly those elements that are in either of the two given sets: thus
for sets A, B and elements z, we have the equivalence t € AUB =z € AVz € B.
One property that normal set union does not have in general, however, is equality
between #(A U B) and #A + #B: that property holds only when A and B are
disjoint. (Recall that the size of the (finite) type S is written #S.)

Disjoint union resembles ordinary union in that it aggregates the elements of its
two operands; but it makes them disjoint by giving each operand a distinct ‘tag’.
Thus, while the elements of the (ordinary) union {0,1} U {1,2} are 0, 1 and 2, the
elements of the disjoint union

left {0,1} | right {1, 2}

are left 0, left 1, right 1 and right 2. The names left and right are the tags, made up
by the programmer (or mathematician) specifically to keep the two sides disjoint:
elements left 1 and right 1 are not equal.

In fact left and right are injection functions, because they inject the component
types ({0,1} and {1,2}) into the disjoint union type (and because they are injec-

136



Disjoint union 137
tive). If we let the disjoint union above be X then we have the following function
types for the injections:

left: {0,1} =X
right: {1,2} > X .

Notice that X has four elements (not just three); and more generally, for any
(finite) sets A and B we have

#(left A|right B) = #A+#B.

If we write several types following a tag, rather than just one, then the injection
functions take values of those types successively.! Thus for example

nats N N |reals R R (15.1)

is a type including the elements nats2 3 and reals 1.5 7. (Writing nats (N x N) |
reals (R x R) would have had a similar effect, but there the elements would have
been nats(2,3) and reals(1.5, 7) instead.)

It is also possible to have a tag just on its own, in which case just a single
element, of that name, is contributed to the type. (Think of the injection function
in that case as a constant, which is after all just a function of no arguments.)

Here are some examples of disjoint unions:

1. The type of days of the week is
sunday | monday | tuesday | wednesday | thursday | friday | saturday .

Typical elements are sunday and monday.
2. A value that is either an integer or is ‘undefined’ could be typed

ok Z | undefined .

Typical values are ok 3 and undefined.
3. A collection of currencies could be typed

pounds Z | guilders Z |ecu Z |lira Z .

Typical values would be pounds3 and lira(—1000000).
4. A database entry might either be empty or associate a key of type K with a
datum of type D; its type would be

empty | full K D .
Typical values are empty and full & d, with &k of type K and d of type D.

Note that the injections are written in the function font, just as other functions
and predicates are.

!That is, the injection functions are Curried.
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15.2 Testing for tags

Consider the type empty | full K D in the final example above. Given an element
z of it, we may wish to know which alternative it inhabits (‘what its tag is’).
Although the formulae

T = empty
and z =fullk d ,

make sense for £ : K and d : D, they are not exactly what we want. The first
formula indeed determines whether z is in the first alternative. But the second is
too specific, depending on a particular £ and d: instead we need the existential
quantification (3% : K; d : D - x = fullk d), asking whether z = fullk d for some
k and d.

We therefore introduce the abbreviation

z is full,

for (3k: K;d:D-xz=fullk d), using a new two-place predicate is for the purpose:
it tests for membership of an alternative.

15.3 Pattern-matching in alternations

Testing as in the previous section is not yet enough to make our disjoint unions
useful: the truth of m is guilders tells us what kind of money we have, but not how
much. Consider for example the type definition

first | second A | third B C
and suppose FE is some expression of that type; then the program

if F is

first — progl
| second a — prog2
| thirdb ¢ — prog3
fi

executes progl, prog2, or prog3 depending on the the tag of E. In addition, the
variables a, b, and ¢ are local in their respective branches of the alternation, and
are initialised appropriately. Thus in general we access the components of elements
of such types with a tagged alternation, as above.

Note that (sanserif) is (of the previous section) is a binary predicate, while (bold)
is simply distinguishes the tagged alternation from the ordinary one. Although
the effect of the tagged alternation can be partially achieved using the predicate is
instead, the expression E in that case must be repeated, and in prog2’, for example,
the variable a is not available as it is in prog2:
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if Eisfirst — progl’
| Eissecond — prog2’
| Eisthird — prog3’
fi

is less useful. That shows the advantage of the pattern matching.

If the expression E does not match any of the supplied patterns in a tagged
alternation, then the alternation aborts (just as ordinary alternation aborts when
no guard is true).

Although the use of tagged alternation should not need much formal justification
in practice, it does — like the other constructs of our language — have an associated
refinement law.

Law 15.1 tagged alternation Let first, middle and last be tags from a typical type
declaration

first A---H |middle I---P |last Q---Z .

Provided none of a - - - h, q-- -z appear free in F or prog, this refinement is valid:

{E isfirst V E is last} prog
C if Fis
firsta---h — {E =firsta---h} prog
| lastqg---z — {E =lastq---z} prog
fi.

O

We have of necessity given just an example of the types to which law tagged al-
ternation 15.1 applies, but the principle should be clear: the assumption {E is
first V E is last} makes explicit the possible tags of E — which need not be all
that the type allows. (We have left out middle, for example.) The guards of the
alternation then correspond exactly to the disjuncts of the assumption.

Here are some alternations based on the example types mentioned earlier:

1. if dd is
wednesday — progl
| tuesday  — prog2
fi
executes progl if dd is wednesday holds, and prog2 if dd is tuesday holds; it
aborts otherwise.

2. if nn is
undefined — skip
[ okn — nn:=ok(n +1)
fi

‘increments’ nn if it is not undefined; if undefined it is left so.
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3. if mm is
guilders m — mm : =ecu(.45 x m)
[ poundsm — mm:=ecu(1l.3 X m)
| liram — mm : =ecu(m/1885)
[ ecum — skip
fi

converts m into European Currency Units. (The ecu branch does nothing;
but what would happen if it were not there?)

4. Suppose we represent a database db as a sequence of length N of entries,
each either empty or containing a key/datum pair:

db : seqy (empty | full K D) .

Then for given k£ : K the following program searches the database for the
associated datum d in D:

1:=0;
re S-
if db[i] is
empty > i:=i+1; S
| fullk" d' —
ifk=F—>d:=d
| E#k —i:=i+1;8
fi
fi
er .

Note how in the pattern-matching guards the local variables are k' and d’,
allowing a distinction to be made between the values found in the sequence
and the original £ and d. The program behaves unpredictably if the key does
not occur in the database.

As an example of the use of tagged alternation 15.1, we will now look at the
development steps that led to the last of the four program fragments above. First

we define for convenience a predicate expressing the presence (or absence) of k in
db:

kindyb = (3d-fullk d € db) .

Then, starting with a specification that allows abortion (hence, unpredictable be-
haviour) if £ does not occur, we proceed:

d: [kindb, fullk d € db]

C var ¢ : N
1:=0;
d,i: [kindbli, fullk d € db] N
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M

re S variant [ is ¢-
d,i: [ =iNkindbli, fullk d € db] q

C “kindbli = i< N = dbli] isemptyV db[i] is full”
if db[i] is
dbli] = empty
empty > d,i: | [=i< N , fullk d € db (i)
kin dbli
dbli] = full k' d’
| fllk' & = dyi: | T=i<N ,fullk d e db (ii)
kin dbls
fi
i) C i:=i+1;
di:[[ <i<NAkindbli, fullk d € db] 4
cCS
N e [i<N
i) Cifk=k —d, i i) = fullk 4’ fullk d € dbl (iii)
F kR
.| dbli] = full k" d' .
| k#K = d,i: [L]KN  fullk d e db (iv)
| kin dbli
fi
(i) C d:=d’
(iv) C “as for (i)”
=141,
S .

The variant [ is increasing, in this example: it starts at ¢ and is bounded above by
N. (Following the earlier presentation strictly, our variant would have been N — i,
bounded below by 0.)

15.4 Type declarations
With the introduction of our new type-forming mechanisms it becomes more im-

portant that we allow types to be named and reused. The syntax is, by analogy
with procedures,

~

type Name = type—ezxpression ,

thus allowing declarations like
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type Money = pounds Z | guilders Z | ecu Z | lira Z
Days = sunday | monday | tuesday
| wednesday | thursday | friday | saturday
Entry = empty | full K D

DataBase = seqy Entry .

Unless the types refer to each other recursively (a case we treat shortly), the
meanings of programs with such declarations can be recovered simply by replacing
type names by the expressions they stand for. Thus the declaration

var db : DataBase

means
var db : seqy Entry

which in turn means
var db : seqy (empty |full K D) .

We allow type parameters as well, writing for example

Maybe T = ok T | undefined ,

and, again in the absence of recursion, the meaning is recovered by substitution:

var marks : seqy Maybe N
means var marks : seqy (ok N | undefined) .

15.5 Recursive types

We are now well-enough equipped to discuss type declarations that refer to them-
selves. Consider, as our first example, the recursive declaration

type Tree = empty | node N Tree Tree . (15.2)
Typical elements of the type are

empty
node 3 empty empty
node 7 (node 3 empty empty) empty .

One might depict them as in Figure 15.1, where their tree-like nature is evident.
In fact we define the elements of a recursive (or any other) type to be exactly
those whose membership in the type can be demonstrated by (perhaps repeated,
but only finitely often) reference to the type definition. In the case above, for
example, we know that empty is a Tree from the left alternative of the declaration,
and it does not matter what the right alternative says. Once we do know that empty

© Carroll Morgan 1990, 1994, 1998



Recursive types 143

empty e

node 3 empty empty @

o/ \o

node 7 (node 3 empty empty) empty @

™

3) .

RN

Figure 15.1 Elements of type Tree

is a Tree, we can use the right alternative to deduce that node 3 empty empty is as
well (and the same holds of course for other natural numbers, not only 3). Once
we know that, we consider node7 (node3 empty empty) empty, and so on.

The above is just about the simplest view one could take to recursively defined
types, and it does restrict us to finite structures, excluding for example the ‘infinite’
tree of Figure 15.2: node0 empty (nodel empty (node2 (---))). There is nothing
inherently wrong with such infinite structures, although we do not treat them here;
but there can be problems however with declarations such as

type TooBig = one |several (set TooBig) .
Since no set (or type) can be big enough to contain representations of all subsets
of itself, it is not at all certain that the type TooBig exists, in spite of the fact that
we can enumerate elements as before:

one
several{}

several{one}
several{several{}}
several{one, several{}} .
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°/@\®
e \@

Figure 15.2 An ‘infinite’ tree

We avoid such problems by restricting our use of type functions within recur-
sive definitions, avoiding set and bag in particular. (The function seq we allow,
however.)

15.6 Structural order

Along with a definition such as (15.2) of Tree comes an ordering relation which we
will write as : it is the ‘is-a-component-of’ order, relating two elements whenever
one occurs structurally within the other. For example,

empty
<& node 3 empty empty
< node7 (node3 empty empty) empty .

The order & has these properties in common with the (strict) order < over the
integers, for example:

e It is irreflexive: for all  we have —(z Q z);
e It is antisymmetric: for all z and y we have z @ y A y @ = = false;
e It is transitive: for all z, y and z we have s Q yAy Q 2z = 2 L 2.

The order < has one property that < does not share, however: it is a total order,
which means that for all distinct z and y we have that either z < y or y < z.
Because the same is not true for &, we call it a (strict) partial order, and strict
partial orders are characterised exactly by the three properties above.

To see that & is partial, consider

node ) empty empty and nodel empty empty .

Neither occurs as a component of the other, and so they are unrelated by Q.
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When developing programs over recursive data structures — as we shall do
shortly — often the variant function is not an integer expression. Instead it is
some element of the recursive type itself, and rather than use <, as we would
over integers, we use the structural order & over the recursive type. For that to
be sound, we use one additional property of & as a structural order, that it is
well-founded: for no starting point z is there an infinite descending chain

.-.@xlﬂ@xl!@xl@l“

Note that our total order < is well-founded over the natural numbers, since no
natural number is negative. Thus our usual technique, writing 0 < v < v, for
integer-valued v, is a special case of the more general approach we are examining
at the moment: the 0 < v restricts attention to the natural numbers (rather than
the integers as a whole including negatives), and < is well-founded over the natural
numbers.

15.7 Pattern matching in iterations

By analogy with tagged alternations, we can define tagged iterations: where a
tagged alternation would abort in the case of no match, a tagged iteration simply
terminates (‘successfully’). Consider for example the type

NatList = empty | cons N NatList , (15.3)
whose typical elements include

empty
cons 0 empty
cons 1 (cons0 empty) .

Given the declarations n : N; nl : NatList, the following iteration assigns to n the
sum of the elements originally in nl:

n:=0;
do nlis consn' nl" —
n,nl:=n-+n' nl

od .

(Note that nl is modified in the process.) The iteration guard covers only one of
the two possible tags for nl, and so termination occurs when nl has the tag of the
other alternative: that is, termination occurs when nl is empty.

The law for the introduction of tagged iterations is

Law 15.2 tagged iteration Let first, middle and last be tags from a type declaration
Type = first A---H |middle [---P |last Q---Y .

Provided none of a---h, q---y appears free in z, inv, E, or V, this refinement is
valid:
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z: [inv , inv A —(E is first V E is last)]
C do £is
firsta---h— z: [E=firsta---h, inv, VQ Vp
| lastq---y—z:[F=lastq---y, inv, VQ Vp
od .

The formula inv is the invariant, the expression V is the variant, and the relation
& must be well-founded.
(I

Note that, as in tagged alternation, the guards of the iteration correspond exactly
to the disjunction (negated) in the postcondition, and that they need not exhaust
the type. (Indeed, if they did then the iteration would never terminate!)

As an example, we define the function suml : NatList — N, for summing a list,
as

0
n + suml nl |

suml empty
suml(cons n nl)

~
~

(15.4)

and develop the program above as follows:

n,nl:=sumlnl,?
C con N:N-
n,nl: [N =sumlnl , n = N]
I = N=n+sumlnl-
n:=0;
n,nl: [I , I A nlisempty] <
n,nl: [I , I A=(nlis cons)]
“tagged iteration 15.2”7

1M

Mt

do nl is consn' nl' —

n,nl: [nl =consn' nl' | I, nl Q nl <
od
I nl" Q nl
| N=n+n"+sumlnl’
C n,nl:=n+n',nl".

1M

n,n , N =mn+sumlnl A nl Q nl

Since the type NatList is structurally identical to seq N, we could almost have
‘defined’ the latter

seqN = () | N:(seqN) .

Continuing that analogy, if nl were declared of type seq N we could have written
for the above program

n:=0;
do nlis n":nl' > n,nl:=n+n',nl’ od,

which is a very compact imperative notation for summing a sequence.
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15.8 Example: Summing a tree

We return now to our definition (15.2) of trees of N, and we develop code to sum
the node values. As one would expect, the recursive code is straightforward (type
Tree is recursive, after all); iterative code will require some ingenuity, however. In

this section we investigate both approaches.

15.8.1 Recursive tree-summing

First, we define sumt (‘sum for trees’ as opposed to lists)

sumt empty = 0
sumt(noden ntl nt2) = n+ sumtntl 4 sumt nt2

and then begin the development using a procedure:

procedure SumT (value nt : Tree; result n : N)
= n:=sumtni
variant NT is nt-
n: [nt = NT |, n = sumtnt|
if nt is

empty — n:=0
| noden' ntl nt2 —

n: [NT = nt = noden’ ntl nt2 , n = sumt nt]

1M

1M

fi
ntl Q NT
C =n'
L nt2 @ NT n=n"+sumtntl 4+ sumt nt2
C var nl,n2:N

nl: [ntl1 @ NT , nl = sumtntl];
n2: [nt2 @ NT , n2 = sumt nt2];
n:=n'+nl+n2

SumT (ntl,nl)

SumT (nt2,n2) .

(i
(i)

The result is shown in Figure 15.3.

IRRIN

15.8.2 Iterative tree-summing

(15.5)

Matters are not so straightforward for the iterative development. Comparing the
two types of sum (15.4) and (15.5), the first for lists and the second for trees, we
find one recursive occurrence in the first case but two in the second. (That is, sumt
‘calls itself’ twice on the right-hand side.) Such multiple occurrences are not so

easily dealt with by iteration.
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procedure SumT (value nt : Tree; result n: N) =
|[ var nl,n2:N:
if nt is
empty — n:=0
| noden’ ntl nt2 —
SumT (ntl,nl);
SumT (nt2,n2);
n:=n'+nl+n2

Figure 15.3 Recursive tree-summing

Thus we look at replacing (15.5) by something more like (15.4). On the right-
hand side of (15.5) we find

sumt nt1l + sumt nt2 |
and note that it can be rewritten
suml(sumt nt1, sumt nt2) .

We are generalising, in other words, and if we carry on for more than two we would
define?

0
sumt nt + sumlt ntl .

sumlt()
sumlt(nt:ntl)

> 1

(15.6)

We now have only one recursive occurrence of sumlt, and we can obtain our original
sumt as a special case of it.
Our iterative development is thus

n:=sumt nt

var ntl : seq Tree-

ntl: =(nt);

n, ntl : =sumlt ntl,? N
con N : N

n,ntl: [N =sumltntl , n = N]|

M

1M

C I = N=n+sumltntl-
n:=0;
n,ntl: [I, I Antl = ()] q

2Functional programmers will recognise this as just suml o map sumt.
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|[ var ntl : seq Tree-
n, ntl : =0, (nt);
do ntl is
empty:ntl’ — ntl : = ntl’
[ (noden'ntl nt2):ntl' — n,ntl:=n + n', ntl:nt2:ntl’
od

Figure 15.4 Iterative tree-summing

C “invariant I; variant V (later)”
do ntl is
empty:ntl' — n, ntl: [ntl = empty:ntl’ , I, 0 <V < V] (i)
| (noden’ ntl nt2):ntl" —
n, ntl: [ntl = (noden’ ntl nt2)mntl’ , I, 0 <V < V] (ii)
od
(i) C ntl:=ntl’
(i) C n,ntl:=n+n',ntl:nt2:ntl" . (iii)

Those last two steps, perhaps rather large at first sight, are easily justified (still
leaving aside the variant). For the second, we could have proceeded more slowly

(ii) C n,ntl: [N = n+ sumlt((noden' ntl nt2):ntl') ,
N=n+sumltnti A0 <V < V]

n,ntl: [N = n+ n' + sumt ntl + sumt nt2 + sumlt ntl’ |
N=n+sumltnti A0 <V < V]

n,ntl: [N = n + n' + sumlt(ntl:nt2:ntl')
N=n-+sumltntl A0 <V < V]

“ignoring the variant part”

M

M

1M

(iii) above.

The collected code for the iterative version is shown in Figure 15.4. The sequence
ntl that occurs there is typical of imperative implementations of problems that are
inherently recursive: examination of the code shows that ntl is accessed as a stack.

But that does leave the variant V. The ‘obvious’ choice of ntl itself (using the
structural order for lists) does not work, since the second branch of the iteration
actually increases the size of ntl, albeit with structurally smaller elements. What
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is decreased is in fact the overall size of ntl, taking its components into account:

0
sizet nt + sizelt ntl

sizelt()
sizelt(nt:ntl)

> 1b

1
1 + sizet ntl + sizet nt2 .

sizet empty
sizet(node n ntl nt2)

1

Thus our variant V is sizelt ntl: with these more elaborate structures, variants are
not as easily found as before!

15.9 Exercises
Ezx. 15.1 What is the size of the type
first | second A | third B C,
in terms of #A, #B, and #C7
FEx. 15.2 O Give types for each of the following:

1. A one-place buffer which either is empty or contains a natural number;
2. The finite binary trees with real numbers at the tips (a recursive type);
3. The colours of the spectrum.

Ex. 15.3 © Example alternation 2 of Section 15.3 leaves n untouched if it is
undefined. Write an alternation that instead aborts if n is ‘undefined’.

Ex. 15.4 O  Recall the code of example alternation 4 in Section 15.3. How would
you specify such a search so that termination is guaranteed even if key k does not
occur in the database db? (In that case d may be given a value arbitrarily.)

Ez. 15.5 How would you implement the specification of Exercise 15.47

Ex. 15.6 O Use a type similar to that of example alternation 2 in Section 15.3
to modify your answer to Exercise 15.4 so that ok d is returned when full &k d € db,
and undefined is returned otherwise.

FEx. 15.7  How would you implement the specification Exercise 15.67

Ez. 15.8 Write your answers to Exercises 15.5 and 15.7 as loop - exit - end
constructions.
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FEz. 15.9 O Recall the type of Section 15.5
type TooBig = one |several (set TooBig) ,
and consider the following subset of it:

paradox = {t: TooBig | (I ts : set TooBig -t = several ts At & ts)} .

Because paradox is a subset of TooBig we have that several paradox is an element
of TooBig, and we can then reason

several paradozr € paradox

“definition of paradox as set comprehension”
(Fts : set TooBig - several paradoz = several ts A several paradoz & ts)

“several is injective”
(Fts : set TooBig - paradox = ts A several paradoz ¢ ts)

“Predicate law 7777
777

What can we deduce at 77?7 What can we then conclude about TooBig itself?
(The above construction is an example of Russell’s paradoz.)

Ez. 15.10 Recall Exercise 15.9, concerning the type TooBig. Consider now the
declaration

type QuiteBig = one |several (finset QuiteBig) ,

which differs from TooBig only in its using finset in place of set. Replay from
here the argument of Exercise 15.9; do we reach the same conclusion?

Ex. 15.11 In Section 15.6 we introduced the notion of (strict) partial order,
together with its three defining properties (page 144). Show that, given transitivity,
properties irreflexivity and antisymmetry are equivalent: each implies the other.

Ez. 15.12 A non-strict partial order is obtained from a strict one by allowing
equality; thus we could define

tQy =2 rtQuyVr=y. (15.7)
Show that &), defined as above, satisfies these three properties:

o [t is reflexive: for all £ we have z & x;
o It is antisymmetric: for all z and y we have s QuAy Q z =z = y;
e It is transitive: for all z, y and z we have s Q Ay Q z =z L 2.

Then show that any non-strict partial order & satisfying those three proper-
ties may be written as (15.7) for some strict partial order & satisfying the three
properties of Section 15.6.
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Ez. 15.13 In Exercise 15.12 there were three properties given to characterise
a non-strict partial order. In Exercise 15.11 you were asked to show that the
first two of the corresponding properties for a strict partial order were equivalent.
Does that equivalence hold for the non-strict case as well? If not, propose a slight
modification to the three (non-strict) properties so that equivalence of reflexivity
and antisymmetry follows from transitivity.

Ex. 15.1 O  Isstrict subset inclusion C a strict partial order? Is it well founded?

Fz. 15.15  In Section 15.7 it was pointed out that NatList as defined at (15.3)
is structurally equivalent to seqN, and as a result we used from then on their
notations interchangeably.

Can you define a type Nat that is structurally equivalent to N itself, and would
justify the notation used in the following factorial calculator?

f=1

don isn'+1—=f,n:=fxn,n od.

FEx. 15.16 ©  Usually in Law tagged iteration 15.2 the variant is the expression
E itself, and the relation & is ‘is a component of’. Use the law to show that the
following tagged iteration is a refinement of r, s : =rv s, 7, where rv is the list-reverse
function:

=0

do sis h:it —» r,s:=h:r,t od .
Hint: You will need a logical constant in the invariant.

FEz. 15.17  Consider the binary tree type
BT X = tip X |node (BT X) (BT X) .

The frontier of such a tree is the sequence of tip-values in left-to-right order. The
following recursive procedure puts out the frontier of a given binary tree bt in
BT X:

procedure Frontier (value bt : BT X)
= if bt is
tipa — output a
| nodebtl bt2 —
Frontier (btl);
Frontier (bt2)
fi.

Develop iterative code (neither recursive nor parametrized) with the same effect,
using a local variable s : seq BT X as a stack. Hint: To express the invariant, use
a recursive mathematical function frontier that you define yourself. You will need
a logical constant.

Harder: What is the variant of your iteration?

© Carroll Morgan 1990, 1994, 1998



FEzercises 153

Ex. 15.18 © Recall Exercise 15.17. Develop iterative code, using two stacks,
that determines whether the frontiers of two binary trees are equal:

var btl,0t2: BT X
eq : Boolean;

eq : =(frontier bt1 = frontier bt2)

Your solution should be as space-efficient as possible: do not just ‘output’ into
two sequences and then compare them.

FEz. 15.19 ©  Verify the strict decrease of the variant sizelt ntl in Section 15.8.2.
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Chapter 16

Modules and encapsulation

We have seen already how procedures act as a structuring tool for large programs,
and that they simplify the development process. Going further, groups of proce-
dures can themselves be organised, usually into units corresponding to data ab-
stractions. We call those modules, and they are the subject of this chapter and the
next.

16.1 Module declarations

Suppose in a large program there were a need for uniquely allocated natural number
tags. The program would declare a set u of used tag values:

declaration: wvar u :setN .

It would contain commands for acquiring and returning tags (assume that ¢ is in
N):

acquire new tag: t,u: [u ZN | t € ug Au = ug U {t}]
return tag:  w:=u — {t} .

And it would contain an initialisation of wu, placed before any other use of it:
initialisation: — w:={} .

Finally — an important point — the variable v would not be used in any other
way.

If the commands occur often, they could be made procedures. But there would
still be a lack of organisation in the program: the three aspects of u (declaration,
use, initialisation) would be widely separated, though they are all to do with a
single abstraction. With a module they can be brought together.

Modules contain all three features: local variable declarations, procedure decla-
rations, and initialisations. They encapsulate their data and all aspects of their
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module Tag
var u : set N;

procedure Acquire (result ¢ : N)
= tuw [uEN, t &€ ugANu=1uU{t};

procedure Return (value ¢ : N)
= u:=u— {t};

initially u = {}
end

Figure 16.1 Module declaration

use. Figure 16.1 gives an example; note that a module is a declaration, not a
command.

A local block containing a module declaration is equivalent in meaning to one
in which the components are distributed back to their normal positions. Its vari-
able declarations are placed with the other variable declarations of the block; its
procedure declarations are placed with the other procedure declarations; and its
initialisation (made a command) is placed at the beginning of the block body. Fig-
ures 16.2 and 16.3 illustrate that distribution. Normally in program development,
however, we would move in precisely the reverse direction, from Figure 16.3 to
16.2.

16.2 Exported and local procedures

In Figure 16.2 it is not possible for prog to refer to the variable b, because prog is
outside the module but b is inside the module. The procedures P1 and P2 can be
used in prog, however; that is precisely what they are for. They are ezported from
the module. In general, we indicate explicitly the procedures to be exported: an
export list gives their names. It is written

export P1, P2,

and is placed inside the module. If it is missing, then by default all procedures are
exported.

Procedures not exported are local, and are available for use only within the mod-
ule. As for local variables, they can be given fresh names if the module is removed.
Figure 16.4 gives an example of the use of a local procedure; it is equivalent to
Figure 16.1.
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|[ var a;

module M
var b;
procedure P1 --- ;

procedure P2 --- ;

initially init
end;
var c;

procedure P ----

prog

Figure 16.2 Local block with module

|[ var q;
var b;
var c;

procedure P --- ;
procedure P1 --- ;

procedure P2 ----

b: [init];
prog

Figure 16.3 Equivalent local block without module

Variables may be exported also, in which case they may be accessed but not
changed (‘read’ but not ‘written’) by commands outside of the module. They may
be changed by commands within the module.
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module Tag
export Acquire, Return;

var u : set N;

procedure Acquire (result ¢ : N)
= Choose (t); uw:=uU{t};

procedure Return (value ¢ : N)
= u:=u— {t};

procedure Choose (result ¢ : N)
= t:[u#N, t & ul;

initially u = {}
end

Figure 16.4 Module with local procedure

16.3 Refinement of modules

We saw in Chapter 11 that refining a procedure body refines the program containing
it, and we regard that as refining the procedure itself.

Similarly, we can refine a module, as a whole, by refining its exported proce-
dures. The local procedures can be changed in any way we please (as long as that
results in refinement of the exported procedures). The initialisation is refined by
strengthening it:

Law 16.1 refine initialisation If init’ = init, then

initially init C initially init’ .
(I

Figure 16.5 contains a refinement of the module in Figure 16.4. By refining
Choose, we refine the exported Acquire, which uses it. The refined module acquires
the least unused tag.

16.4 Imported procedures and variables

Modules developed for one program can often be reused in another, because their
encapsulation makes them largely independent of the surrounding program.
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module Tag

procedure Choose (result ¢ : N)
= t:=(Me:N|eeN-—u)

end

Figure 16.5 Refinement of Figure 16.4

For reuse, however, we must be explicit about the dependencies there are. Ref-
erences made by the module to its environment are imported using an import list.
Both variables and procedures may be imported.

An imported variable is redeclared within the module, and that declaration must
be implied! by the original declaration of the variable.

An imported procedure is redeclared within the module, and its original dec-
laration must refine its redeclaration. The effect of an imported procedure on a
module is given by the text associated with its (re)declaration in the module, not
for example by the text of the actual (external) procedure — a necessary precau-
tion if we are to allow modules to be refined in isolation, without direct reference
to the context in which they will be placed.?

Both sorts of redeclarations — of variables and procedures — are to make rea-
soning about the module independent of the surrounding program, and the import
list distinguishes redeclarations from declarations.

Imported procedures cannot refer directly to local variables of the module (be-
cause of variable capture); for that, they must use parameters. Figure 16.6 con-
tinues the example by importing Choose. The redeclaration of Choose, within
the module, records the assumptions made about it. Refining the module means
assuming less:

Law 16.2 refine module Let E be the list of exported procedures from module M,
I its imported procedures, and init its initialisation. A module M’ refines M if
the following three conditions are satisfied:

1. Its exported variables are unchanged.

! Consider types as local invariants for that purpose, so that for example the declaration a : N
‘implies’ the declaration a : Z.

ZNaturally an implementor is likely to resolve calls to the imported procedure by using the
actual external procedure. Given our rule about imported procedures being refined by the proce-
dures they redeclare, the effect of that is a refinement of the whole program — but one on which
the developer cannot depend. No more can he depend on the fact that a particular compiler might
implement all assumptions as skip, or all nondeterministic choices as a deterministic choice of
the first enabled alternative.

© Carroll Morgan 1990, 1994, 1998



Imported procedures and variables 159

module Tag
export Acquire, Return;
import Choose;

var u : set N;

procedure Acquire (result ¢ : N)

= Choose (N — u, t);
u:=uU{t}

procedure Return (value ¢ : N)
= u:=u— {t};

procedure Choose (value s : setN; result e : N)

= els#{}, eesl;

initially v = {}
end

Figure 16.6 Module with imported procedure

2. Its exported procedures E' refine E.

3. Tts initialisation init’ refines init.

In addition, the following changes may be made provided the three conditions
above are not invalidated as a result:

1. Its imported variables’ declarations are weakened.
2. Tts imported procedures I' are refined by I.

3. An imported procedure I is replaced by a local (neither imported nor ex-
ported) procedure I" that refines I.

O

(In fact the third change cannot invalidate any of the earlier conditions, but is
mentioned for completeness: in that way a module can be decoupled from parts of
its context.)

Note that Law 16.2 says ‘if’, and not ‘only if’: we see in the next chapter that
there are other much more general ways of achieving M T M'.
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module M1 module M2
export P1; export P2;
import P2, import P1;
procedure P1 = magic; procedure P2 = magic;
procedure P2 = magic procedure P1 = magic
end end

Figure 16.7 Circular export/import

16.5 Definition and implementation modules

In fact we do not need a technical meaning for ‘definition’ and ‘implementation’
when applied to modules. They refer only to a discipline of module reuse.

When a module is first formulated, it is likely to be during the development of
some program, and will be abstract. Using an import list, it can be extracted from
the program, and left for later refinement. That is a definition module.

Later, we can refine the definition module. The refined version can be inserted
back into the program, replacing the original. That is an implementation module.

If in the development of some other program the same (definition) module is
reached, it can immediately be replaced by its refinement, the implementation
module. If the implementation module is code, as often will be the case, then that
replacement can be done by linking in machine code just before execution. Thus
the discipline we refer to is simply this:

If for modules D and I we have D C I, then we can call D a definition
module and I (one of) its implementation module(s).

Definition/implementation pairs can be saved for future program developments.
The definition module is published, but the implementation module is supplied.
Since a module can have many refinements, a definition module can have many
corresponding implementation modules.

16.6 Circular export/import

Consider Figure 16.7, and its refinement by refine module 16.2 to Figure 16.8. Fig-
ure 16.7 is infeasible (it contains magic), but Figure 16.8 is code — remember that
the imported procedures (for example, P2 into M1) are there only for reasoning
(about M1). Imported procedures need not be code.

Recall however from Chapter 1 that infeasible programs can never be refined to
code.
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module M1 module M2
export P1; export P2;
import P2, import P1;
procedure P1 = P2, procedure P2 = Pl1,;
procedure P2 = magic procedure P1 = magic
end end

Figure 16.8 Apparent refinement of Figure 16.7

The contradiction is due to the circular export/import between M1 and M2;
and a simple way of avoiding that is to forgo such circularities between modules.
If more care is taken, that can be relaxed to banning only circularities between
procedures in separate modules. The most general solution involves variants, as
for recursion; but it is seldom needed in practice.

16.7 Initialisation in code

We allow only certain initialisations in code. One is
initially true,

which allows any initial values of the variables consistent with their types. An
initialisation true can be omitted.
The other initialisation allowed in code is

initially w = F,

where the variables w are all local, and the code expressions E are consistent with
their types. The initialisation true is a special case of that, where w is empty.

16.8 Exercises

Ezx. 16.1 The law refine initialisation 16.1 allows any initialisation to be refined
to false. Why isn’t that a good idea?

FEz. 16.2 O Is it possible to refine Tag so that it acquires only even numbers?
Is the result feasible?

FEx. 16.3  Modify Tag so that it can abort if ‘too many’ numbers are acquired but
not returned. Is that a refinement? Does the original version refine your modified
version?
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Ex. 16.4 © Write a module for acquiring pseudo-random numbers. Does it
refine Tag?

Ex. 16.5 O Recall Figure 16.7. In Module M1, can the imported procedure P2
be refined to abort? Can that be done in Figure 16.87

FEx. 16.6 ©  Suppose a module contained the declarations

var n : N;
import In;
export Out, n;

procedure In (result m:N) = m: [m =0V m =1];
procedure Out = In (n),

and that the actual procedure supplied for In, by the context, was
procedure In (result m:N) = m:=0.

What value would a call of Out assign to n under those circumstances?

Suppose now a programmer refined Out to the assignment n:=1. Does that
refine the module, according to Law 16.27 Is the new behaviour — of the module
and its actual procedure — a refinement of the original behaviour?

Can you explain?
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Chapter 17

State transformation and data
refinement

In the last chapter, where we met modules for the first time, the notion of module
refinement was introduced: it was argued that refinement of a module’s individual
procedures refined the module overall.

We now consider a much more radical possibility, in which we can carry out quite
startling changes within the module while still being sure of its overall refinement.
The technique is known as state transformation, or data refinement.

17.1 What we cannot yet show

Consider the module Tag' of Figure 17.1. It is a refinement of module Tag of
Figure 16.1, although we cannot yet show it to be — for suppose the contrary,
that Tag £ Tag': then a client expecting Tag would have to be disappointed by
Tag'. That means in turn that there is some program whose behaviour would be
detectably different if Tag were replaced by Tag’ — otherwise, the client would
have no grounds for complaint! But there is no such program: using Tag’, any
series of Acquire and Return will produce successively higher values of ¢, starting
from some randomly chosen value. And using Tag, exactly the same could have
happened. (One might argue that it is unlikely: but still it is possible.) Thus
Tag L Tag' is not true.

On the other hand, we can see easily that Tag’' [Z Tag is indeed the case. For Tag
can Acquire 1 then 0, and that is something Tag' could never do. Thus Tag C Tag'
but Tag' Z Tag, and so Tag T Tag': a strict refinement. The former could be a
definition module, and the latter one of its implementation modules.

Although we have argued that Tag C Tag’, indeed we cannot show that rigor-
ously with our techniques so far: the individual procedures Tag’ do not refine their
counterparts in Tag; moreover, the states of the two modules are completely differ-
ent. Such differences, however, are of great importance in program development.
Module Tag contains a set of natural numbers, and few programming languages
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module Tag’
var n : N;

procedure Acquire (result ¢ : N)
= t,n:=n,n+1;

procedure Return (value ¢ : N)

= skip
end

Figure 17.1 A refinement of Figure 16.1

accept that as code. But Tag' contains only a single natural number, and that is
far more realistic.

We see shortly that it is precisely because the state of a module cannot be
accessed directly — its local variables — that we are free to change that state;
we can replace more abstract variables (like sets) by more concrete variables (like
simple numbers), provided the difference cannot be detected by use of the exported
procedures.

Such a change of state is sometimes known as change of representation; if the
change tends from abstract to concrete (towards code, in other words), it is known
as data refinement.

17.2 State transformation

State transformation, carried out on the interior of a module, results in refinement
of its external behaviour. We consider two specific transformations: one adds
variables to a module; the other removes variables from a module.

To add variables, a coupling invariant is chosen, relating the existing variables
to the new ones; it can be any formula over the local and exported variables of the
module. (It may not refer to imported variables.) Declarations of the new variables
are added; the initialisation is strengthened by conjoining the coupling invariant;
every guard may assume the coupling invariant; and every command is extended
by modifications to the new variables that maintain the coupling invariant. The
resulting module then refines the original.

To remove variables, they must be first made auxiliary by refining the procedures
of the module individually. A set of variables is auxiliary if its elements occur
only in assignments or specifications whose changing variables are in the same set,
so that other variables cannot depend on them. Then the declarations and all
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occurrences of those variables are removed. Again, the resulting module refines
the original.

Often the two steps are carried out in succession — augmentation to add vari-
ables, then diminution to remove them — though in special cases we can bundle
them together in one step.

Before we look at augmentation however, the first of the two, we must take a
brief detour.

17.3 Coercions

We have already met assumptions, formulae {pre} between braces that act as
abort unless the formula holds as that point in the program. Complementary to
assumptions are coercions, which make a formula true at that point in the program.
Here is the abbreviation:

Abbreviation 17.1 coercion Provided post contains no initial variables,
[post] =: [true , post] .

O

A coercion to post behaves like skip if post is true, and magic otherwise. As do
assumptions, coercions have an empty frame, and true as one of their constituent
formulae. For both, the explicit appearance of the sequential composition operator
is optional.

Here are two simple laws for coercions:

Law 17.2 absorb coercion A coercion following a specification can be absorbed
into its postcondition.

w: [pre , post]; [post'] = w: [pre, post A post'] .
O

(Compare absorb assumption 1.8.)

Law 17.3 introduce coercion skip is refined by any coercion.

skip LT [post] .

O
(Compare remove assumption 1.10.)
We should also mention the following law for absorbing an assumption following

(rather than preceding) a specification. It is
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Law 17./ establish assumption An assumption after a specification can be re-
moved after suitable strengthening of the precondition.

w: [pre , post]; {pre'}
= w: [pre A (Y w - post = pre’) [wo\w] , post] .

O

Law 17.4 exploits the fact that we do not distinguish a program that can abort
later (because post can be true but pre’ false) from one that aborts sooner (because
in its precondition (Y w - post = pre’) [wy\w] is false).

Assumptions and coercions are together known as annotations. Coercions in
particular have many surprising — and useful — properties that are explored in
the exercises for this chapter. One specific use is in augmentation, to which we
now turn.

17.4 Adding variables: augmentation

Each of the following laws deals with an aspect of adding new variables. We assume
throughout that the new variables are ¢, and that the coupling invariant is CI.
Note that they are not refinement laws, and so do not contain the symbol C.
Rather they are transformations, for which we use the word ‘becomes’.

In our examples below, we suppose the module already contains a variable p,
and that the new variables are ¢ and r. The coupling invariant is p = ¢ + r, and
all three variables have type N.

17.4.1 Declarations

Declarations of the new variables are added to the module. For the example, we
would add var ¢, r : N.

17.4.2 Initialisation

The coupling invariant is conjoined to the initialisation.

Law 17.5 augment initialisation The initialisation I becomes I A CI.
O

If the initialisation were p = 1, it would become p =1 Ap = ¢+ r.

17.4.3 Specifications

The coupling invariant is conjoined to both the pre- and postcondition of specifi-
cations, and the frame is extended to allow the new variables to change.
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Law 17.6 augment specification The specification w: [pre , post] becomes

w, c: [pre , CI , post] .
O

For example, the command p: [p > 0, p < po] becomes

p.g,ri[p>0, p=q+r, p<po .

17.4.4 Assignments
Assignments are extended so that they can change the new concrete variable, but
they too must preserve the coupling invariant:

Law 17.7 augment assignment The assignment w:=F can be replaced by the
fragment

{CI} wyc:=E,?[CI].

O

Note the similarity between Laws 17.6 and 17.7: in each, the frame is widened
to include ¢, and the coupling invariant appears before (in the precondition, or
assumption) and after (in the postcondition, or coercion). As a special case of
augment assignment 17.7, however, we have

Law 17.8 augment assignment The assignment w:=F can be replaced by the
assignment w, c:=F, F provided that

CI = Cllw,c\E,F].

O

Law 17.8 is easily obtained by refining the right-hand side of Law 17.7. (See
Exercise 17.32.)

As an example of augmenting assignments, the command p:=p + 1 can be
replaced by

{p=q+r}pqri=p+1,27p=q+7r],
which in turn can be refined to
p,q:=p+1,q+1,

for example. The effect of the coercion is to force the two open assignments 7,7 to
resolve to values that make the formula hold (the formula is p = ¢+, in this case).
There may be many such values, and so there are of course other possibilities for
the augmentation. If the notion of coercion seems too surprising, remember that
the alternative, augment assignment 17.8, reaches p,q:=p + 1,¢ + 1 in a single
step.
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17.4.5 Guards

Each guard can be replaced by another whose equivalence to the first follows from
the coupling invariant.

Low 17.9 augment guard The guard G may be replaced by G’ provided that
cr = (G&d).

O

Note that CI A G is always a suitable G' above, as is CI = G. The guards p > 0
and p < 0 could become p >0Ap=qg+rand p<O0Ap=q+r.

17.5 Removing auxiliary variables: diminution

Each of the following laws deals with an aspect of removing variables. In each
one we assume that the auxiliary variables are a and that their type is A, and we
continue with the example of the previous section. There is no coupling invariant
for diminutions.

17.5.1 Declarations

The declarations of auxiliary variables are simply deleted. In our example, the
declaration var p : N is removed.

17.5.2 Initialisation

Existential quantification removes auxiliary variables from the initialisation.
Law 17.10 diminish initialisation The initialisation I becomes
(Fa:A-1).

O

The example initialisation, augmented in Section 17.4.2, becomes ¢ + r = 1 when
p is removed.

17.5.3 Specifications

The following laws remove variables from a specification. In many practical cases,
however, these laws are not needed: often the variables can be removed by ordinary
refinement. (See our more substantial example, in Section 17.6.2.)

The first law is used when the variable a, to be removed, is in the frame:
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Law 17.11 diminish specification The specification w, a: [pre , post] becomes

w: [(Fa:A-pre) , Vap: A-preg= (Ja: A-post))] ,

where preg is pre[w, a\wy, ag]. The frame beforehand must include a.
(Il

Law 17.11 may appear surprisingly complex (a good reason perhaps to use ordi-
nary refinement where possible to eliminate the abstract variables, and to reserve
diminish specification 17.11 as a last resort). In fact it performs three operations:
first, since a is auxiliary, we can have no interest in its final value — we care only
that there is one. That explains the quantification 9 a in the postcondition.

Second, we strengthen the postcondition so that it no longer depends on the
initial value of a; it must apply for all such values. That explains the quantifi-
cation V ag in the postcondition. The antecedent prey is optional (and strengthen
postcondition 5.1 allows it in any case); it makes the postcondition weaker, and
less likely to be infeasible.

Finally, we cannot refer in the precondition to the actual value of a, although
we can be sure it has some value. That explains the quantification da in the
precondition, which weakens it.

The example from Section 17.4.3 yields, after several applications of Predicate
law A.56,

¢r:lg+r>0, g+r>0=qg+7r<q+rn .
And by strengthening the postcondition that refines to
¢rilg+r>0, ¢g+r<q+r .

If a specification does not contain « in the frame, we can still use Law 17.11
provided we use expand frame 8.3 first. Or we can use this law, derived from those:

Law 17.12 diminish specification The specification w: [pre , post] becomes

w: [(a:A-pre) , Va:A-prey = post)] ,

where prey is pre[w\wp]. The frame beforehand need not include a, and post must
not contain ay.

Proof:

w: [pre , post]
C “expand frame 8.3”

w, a: [pre , post \ a = ap
becomes “diminish specification 17.11”

w: [(Fa:A-pre),
(v a: A- prelw, a\wy, ao] )]

= (Ja:A-post\a=a)

© Carroll Morgan 1990, 1994, 1998



170  State transformation and data refinement

C “Predicate law A.56”
w: [(Fa:A-pre)

.. pre[w, a\wp, ag)
Vao t A = qp € A /\poSt[a\a’O] )]

C “remove gy € A, rename bound variable”
w: [(Fa:A-pre) , Va:A-prefw\wy] = post)] .

O
For example, n: [p > 0, 0 < n < p] is taken by augment specification 17.6 to
nq,r[p>0,p=q+r,0<n<p],

and then by diminish specification 17.12, strengthen postcondition 5.1, and contract
frame 5.4 to

n:lg+r>0,0<n<gqg+r].

17.5.4 Assignments

The auxiliary part of the assignment is removed.

Law 17.13 diminish assignment If E contains no variables a, then the assignment
w, a:=FE, F can be replaced by the assignment w:=FE.
|

The example yields ¢:=¢q + 1.

17.5.5 Guards

Guards must be rewritten so that they contain no auxiliary variables. Our ear-
lier law alternation guards 4.3 can be used for that, since it is applicable to the
refinement of alternations generally. In the example, we get ¢+ > 0 and g+r < 0.

17.6 An example of data refinement

As our first serious' example, consider the module of Figure 17.2 for calculating
the mean of a sample of real numbers. We write ) b and #0b for the sum and size
respectively of bag b.

The module is operated by: first clearing; then entering the sample values, one
at a time; then finally taking the mean of all those values.

ITt is serious: the refinement we calculate here is exactly the one used in pocket calculators.
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module Calculator
var b : bagR;

procedure Clear = b:=|];

procedure Enter (value r: R)
= b:=b+|r];

procedure Mean (result m : R)

= (b# LI} me=Sb/4b

end

Figure 17.2 The mean module

We transform the module, replacing the abstract bag b by a more concrete
representation s, n, a pair of numbers. Throughout, we refer to b as the abstract
variable, and to s, n as the concrete variables. First s and n are added, then b is
removed.

17.6.1 Adding concrete variables

We shall represent the bag by its sum s and size n:

abstract variable: b : bagR
concrete variables: s:R; n: N
coupling invariant: s=> bAn = #b

The first step is to add the declarations of new variables s,n and
apply the augmentation techniques of Section 17.4 to the initialisation and the
three procedures.

e For the initialisation, we have from augment initialisation 17.5
5= Z bAn=%#b.

e For Clear, we have from augment assignment 17.8
b,s,n:=[],0,0.

e For Enter, we have from augment assignment 17.8

bys,n:=b+|r],s+r,n+1.
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e For Mean we have from augment specification 17.6 (after rewriting)
mys,n:[b#£ ], s=XbAn=#b, m=3b/#b] ,
and we can carry on, making these refinements immediately:
Cm,s,n:[n#0, s=XbAn=%#b, m=s/n]
m:n#0, s=>bAn==%#b, m=s/n]

“remove tnvariant 7.1”
m:[n#0, m=s/n] .

I 1m

The result is shown in Figure 17.3.

Remember that augmentation (or diminution) is not in itself a refinement: the
assignment {b # ||} m:=> b/#b is not refined by {n # 0} m:=s/n. The
relation between them is augmentation (or diminution), relative to the abstract
and concrete variables and the coupling invariant. That is why we write becomes
rather than C.2

17.6.2 Removing abstract variables

The abstract variable is b, and its removal from Figure 17.3 is straightforward for
the assignment commands, because it is auxiliary (diminish assignment 17.13). Its
removal from Mean is unnecessary — it has been removed already! That leaves
only the initialisation. We use diminish initialisation 17.10, giving

n=0=s=0.

Now the abstract b has been removed altogether; the result is given in Figure
17.4. But the appearance of an explicit initialisation may be surprising, and it is
in circumstances like this that being careful pays off. Suppose at some later stage
an alternative abstract definition of Clear were given, such as this one:

procedure Clear

=ifb#£ || —b:=[]
I b=]] — skip
fi.

It is equal to the original, in Figure 17.2, but it could be more efficient if the
operation b:=| | were very expensive, to be avoided if at all possible. With our
augmentation and diminution it becomes

?Compare change of variable in an integral: faced with [ ab dz /1 — 22 we might consider the
substitution z = sinf (which is the analogue of the coupling invariant). But it would be wrong
to claim that dz/+/1 — 22 and (cos€df)/ cosf were equal, even though the two definite integrals
as a whole are equal.
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module Calculator
var b : bagR;
s: Ry n:N;
procedure Clear = b,s,n:=|],0,0;

procedure Enter (value r: R)
= b,s,n:=b+|r]|,s+r,n+1;

procedure Mean (result m : R)
= m:[n#0, m=s/nl;

initially s => b A n = #b
end

Figure 17.3 After addition of concrete variables

procedure Clear
=ifn#0—sn:=0,0
[ n=0— skip
fi

)

and a subtle bug has crept in — suppose n and s were initially 0 and 1, for example
(as they might be with no ezplicit initialisation)!

So our explicit concrete initialisation is necessary, after all, even though there
was no abstract initialisation (other than true); and it is our good fortune that a
rigorous approach brings that naturally to our attention. Note however that by
refine initialisation 16.1 we could replace it by the simpler s = 0.

17.7 Abstraction functions

The laws of Section 17.4 dealt with a very general case of data refinement, in which
the coupling invariant linking the abstract and concrete states could be anything
whatever. In particular, several abstract variables could be collapsed onto a single
concrete representation, as shown in the example of Section 17.6:

both b= [1,2,3]

and b =[2,2,2] are represented by s =6 A n = 3.

That is actually a fairly rare occurrence in everyday program development how-
ever: it is much more common for the coupling invariant to be functional from
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module Calculator
var s : R; n:N;

procedure Clear = s,n:=0,0;

procedure Enter (value r: R)

~

= s,n:=s+r,n+1;

procedure Mean (result m : R)
= m:[n#0, m=s/nl;

initially n =0=s5=0
end

Figure 17.4 The mean module, after transformation

concrete to abstract. (The above is not, but our earlier example p = ¢ + r is.)
An example is the representation of sets by sequences, in which many distinct se-
quences may represent a given set: the elements may appear in different orders,
may be duplicated, or even both. But to each sequence there corresponds at most
one set; that is the functional nature of the abstraction, and what distinguishes it
from the calculator example at the beginning of Section 17.6.

The general form for such coupling invariants, called functional abstractions is

a=af cAdtic, (17.1)

where af is a function, called the abstraction function and dti is a predicate, in which
a does not appear, called the data-type invariant. In the case of sets and sequences,
for example, the abstraction function is set, the function that makes a set from a
sequence. Various data-type invariants may be included as well, for example that
the sequences are kept in order (in which case we would write a = set ¢ A up ¢), or
that the sequences contain no duplicated elements.

The reason for our interest in the special cases of data refinement is that when
the augmentation and diminution laws are specialised to coupling invariants of the
form (17.1) they become very much simpler, and the augmentation and diminution
may be done together in one step.

17.7.1 Data-refining initialisations

Suppose that here (and in the following subsections) the coupling invariant is in
the form (17.1), whence we may speak of abstraction function af and a data-type
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invariant dti. Given abstract initialisation I we would with augment initialisation
17.5 calculate I A a = af ¢ Adti ¢; then diminish initialisation 17.10 would produce

(Ja-INa=afcAdtic) .

But we can simplify that as follows:

“Predicate law A.80”
(Fa-IANa=afc)Adtic
“Predicate law A.56”
I[a\af c]Adtic .

Thus one merely replaces all occurrences of abstract variables a by their concrete
counterparts af ¢, conjoining the data-type invariant dti ¢ to the result. That gives

Law 17.1} data-refine initialisation Under abstraction function af and data-type
invariant dti, the initialisation I becomes

Ia\ af c] Adtic .
O

In our original example (Section 17.4.2) that would take us in just one step from
abstract initialisation p = 1 to concrete initialisation ¢ + r = 1. (The data-type
invariant is just true.)

As an example, let us represent a set as : set A by a sequence aq : seq A kept
in strictly ascending order (thus excluding duplicates, and making the assumption
that A is an ordered type). By analogy with up, we define

supaq = (Vi,j: 0=¢aq-i <j = aq[i] < aqlj]) ,
and so take as our coupling invariant
as = set aqg A sup aq . (17.2)

If we now suppose that our abstract initialisation was as = {}, we calculate the
formula set ag = {} A sup aq for the concrete initialisation, and continue

Thus to implement an abstract initialisation to the empty set, we provide a concrete
initialisation to the empty sequence, whose strictly ascending order is trivial.
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17.7.2 Data-refining specifications

Here as above we are going to carry out augmentation and diminution in succession;
since diminish specification 17.11 will require an abstract a in the frame, we shall
start with one there in readiness. Thus we begin with w, a: [pre , post] and apply
augment specification 17.6 to get

w,a,c: [pre, a=afcAdtic, post] .
Law diminish specification 17.12 then produces the (rather complicated-looking)

w,c: [(Fa-pre Na=afcAdtic) ,
Vg - preg A ag = af cg A dti ¢
RN (Fa-post A a=af cAdtic)

As before, however, the one-point laws A.56 apply, and we can simplify as fol-
lows:

C “Predicate laws A.78, A.80, A.56”

preglag\ af o] A dti ¢ ]
= post|ay, a\ af ¢y, af ¢] Adtic
C “strengthen postcondition 5.1”

w, c: lpre[a\ af c] Adtic

w, c: [pre[a\ af ¢] , dtic , post[ag, a\ af co, af ¢]] .

The pattern is again substitution (abstraction function) and conjunction (data-
type invariant). The law is thus

Law 17.15 data-refine specification Under abstraction function af and data-type
invariant dti, the specification w, a: [pre , post] becomes

w, c: [pre[a\af ¢] , dtic, post[ay, a\ af ¢y, af c]] .
a
Earlier that would have taken us from

pilp >0, p<po

directly to ¢,r: [¢+7 >0, g+ r < go+ 19| in just a single step.
Continuing with our more recent example above, we consider now the specifica-
tion

as: [a € as , a & as N {a} U as = asy|

that removes a given element a from our abstract set as (and which may abort if
the element is not there). With the coupling invariant (17.2) we proceed

becomes “data-refine specification 17.15”
aq: [a € setaq , supaq, a &€ setaq A {a} Usetag = set aq| ,
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and are confronted immediately with one of the ‘facts of life’ in such derivations:
after a calculated data refinement there still may be considerable work to do at
the concrete level. In this case, we carry on as follows:

C var n:N-

n: [a € aq , aq[n] = a]; (i)
aq,n: [ag[n] = a Asupaq ,
supag A a & setag A {a} Uset aqg = set aq) (ii)
(i) C “invariant a € agqln”
n:=0;

do ag[n| #a —n:=n+1od

n,aq:=?, aqtn H# agql(n + 1)

con AQ :seq A-

n,aq: [AQ = aqtn 4 aqgl(n+ 1), ag = AQ)]

I = AQ = agtn + agl(n + 1)-

n,aq: [I , I ANn>#aq—1]; <

aq:=fraq

“invariant I”

do n < #aq—1—
aq[n],n:=aqn +1],n +1

od .

(ii)

117

M

1M

17.7.3 Data-refinement of assignments

In this case by augment assignment 17.8 we can replace w,a:=F, F by the as-
signment w, a,c:=FE, F, G provided

a=af cAdtic= F=af G AdtIG . (17.3)

(Note that w, a here are together playing the role of w in augment assignment
17.8.)

If we assume additionally that F, G contain no a, then diminish assignment
17.13 takes us immediately from w,a,c:=FE,F,G to w,c:=FE,G. The law is
thus, after simplification of the proviso,

Law 17.16 data-refine assignment Under abstraction function af and data-type
invariant dti, the assignment w,a:=F,F can be replaced by the assignment
w, c: = E[a\ af ¢|, G provided that G contains no a, and that

dtic = Fla\af c] =af G
and dtic=dtiG .
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That our earlier p:=p + 1 becomes q:= q + 1 follows immediately.

For our later example we take the abstract a:={2,0} (with A as N), and we
propose aq:=(0,2) for the concrete assignment. The proviso is (the two taken
together)

supag = {2,0} =set(0,2) Asup(0,2) ,

and is easily verified (even without its antecedent). But note how the proviso would
not hold had we chosen aq:=(2,0), where the sequence is not in order.

17.7.4 Data-refinement of guards

Law augment guard 17.9 allows us to replace G by G[a\ af ¢] A dti ¢, where as
in augment guard 17.9 there is some flexibility: the conjunct dtic is optional.
Subsequent adjustments may be made by alternation guards 4.3 as before. We
have

Law 17.17 data-refine guard Under abstraction function af and data-type invari-
ant dti, the guard G may be replaced by G|a\ af ¢] A dti ¢, or if desired simply by
G|a\ af ¢] on its own.

O

Consider for example the alternation

if a € as — progl
| a¢& as — prog2
fi.

By data-refine guard 17.17 (and other laws) that becomes

if a € set aqg — progl’
| a ¢&setaqg — prog2’
fi

)

where progl’ and prog2’ data-refine progl and prog2 respectively. We could con-
tinue

C var n: N-
n: [supaq , a € setaq & a = aqn]]; <
if a = aq[n] — progl’

1 a# aq[n] — prog2’
fi

C n:[supag, agtn < a < agln]
c 777.
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17.8 Exercises

Ezr. 17.1 Give other possible new assignment commands for the example p : = p+
1 in Section 17.4.4.

Er. 17.2 Use diminish specification 17.12 to remove the variable a from the
following:

rlr=a,c=a+1].

Ez. 17.3  (See Exercise 17.2.) Remove a from that specification without using
diminish specification 17.12.

Ex. 17.4 O Use diminish specification 17.11 to remove a from
a,z: [z = ap] .

Now remove it from a,z: [z = a]. Comment on the difference: is a auxiliary in

both?

Ex. 17.5 © Log-time multiplication The following program terminates in time
proportional to log N:

I[,m,n:=0,1, N;

don#0—
if evenn - m,n:=2xm,n+2
| oddn —l,n:=l+m,n—1
fi

od .

Propose an iteration invariant that could be used to show that the program refines
l,m,n: [l =NJ,

given the declarations [, m,n, N : N.
Augment the program by variables [’ and m’, coupled as follows:

' = MxI

m = Mxm.
What is the resulting program, and what value is then found in [’ on its termina-
tion?
Now go on to diminish the program by removing all variables not needed for the
calculation of I'; then rename variables to remove primes. What is the resulting
program?
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Ex. 17.6 Log-time exponentiation Augment the program of Exercise 17.5 by
variables I’ and m’, coupled as follows:

l/:Ml
m = Mm™.

What is the resulting program, and what value is then found in [’ on its termina-
tion?

Diminish the program by removing all variables not needed for the calculation
of I’; then rename variables to remove primes. What is the resulting program?

Ex. 17.7  Log-time transitive closure Let A be given, and define
tcn = (+i:N|i<n-A4").

(The function tc could be said to be forming the transitive closure of A, if A were
an incidence matrix for a graph; but that point of view is not necessary for this
exercise. )

Augment the program of Exercise 17.5 by variables I’ and m’, coupled as follows:

' = tcl

m' = tcm .
What is the resulting program, and what value is then found in ' on its termina-
tion?

You will need an identity that gives tc(a + b) in terms of tc a, tc b and A®; what
is it? How does that identity help you to decide what the ‘definition’ of tc 0 should
be?

Your augmented program should not contain any occurrences of tc, but may
contain expressions A™.

Further augment the program — add another variable, suitably coupled — so
that the exponentiation can be removed. Note that the coupling invariant may be
assumed when simplifying expressions.

Now diminish the program so that, after suitable renaming, a program remains
that calculates tc N in logarithmic time.

Er. 17.8 O Exercise 17.6 showed that A" can be calculated in time logarithmic
in N, and so the equality

tcN = (A" -1)/(A—-1)

appears to extend that logarithmic efficiency to the calculation of tc N itself, where
tc is as defined in Exercise 17.7.

Under what circumstances might the program of Exercise 17.7 still be a better
way to proceed? (The case A =1 is on its own not a sufficient answerl!)
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Ex. 17.9 O Suppose pre and post and w contain no a or ag. What effect does
diminish specification 17.12 have on the following?

w: [pre , post]

Ex. 17.10 Q Use assumption 1.6 to formulate laws for adding and removing
variables from assumptions.

FEz. 17.11 ©  Use coercion 17.1 to formulate laws for adding and removing vari-
ables from coercions.

FEz. 17.12  Apply diminish specification 17.12 directly to

m, s, n: [b;éH , s=> bAn=#b, m:Zb/#b} ,

without first doing the refinements on p.172. Then simplify the result. Which is
easier: this exercise, or p.1727

Ex. 17.13 ©  Suppose the mean procedure were instead

procedure Mean (result m : R)

= if b £ || m:=3b/#b
[ b=]] — error
ﬁ7

where error is some definite error indication unaffected by data refinement. Use
augment gquard 17.9 and alternation guards 4.3 to calculate the concrete procedure.

Ex. 17.1, ©  In Exercise 16.2, Module Tag of Figure 16.1 was refined so that
Acquire acquired only even numbers. The result was infeasible, because the pre-
condition u # N was not strong enough to ensure that N — u contained any even
numbers still to be acquired. Use augmentation with no concrete variables but still
a coupling invariant of u € finset N to show that Acquire can be transformed to

tyu: [u € finset N | ¢ € ug A u=uyU{t}] .
How does that help with Exercise 16.27

FEz. 17.15 ©  Show that in the Tag module of Figure 16.1, the body of Return
can be replaced by skip. Hint: Remember that you cannot transform just part
of a module. Use new variable v and coupling invariant v C v A v € finset N
to transform all of it. The appearance of changing only Return is then gained by
renaming v back to u.

Fz. 17.16  (See Exercise 17.15). Why is v € finset N necessary in the coupling
invariant?

Ex. 17.17  Show that Tag C Tag' (Figures 16.1 and 17.1).
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182  State transformation and data refinement

Ex. 17.18 ©  Explain the effect of a data refinement with no concrete or abstract
variables, but still a coupling invariant. Hint: Recall Exercise 17.16.

Ex. 17.19 Why isn’t false a good idea for a coupling invariant? Hint: See
Exercise 16.1.

Ex. 17.20 O The example of Section 17.7.2 on data-refining specifications con-
cerned removing an element a from a set as. What does the concrete version (in
terms of aq) do if a is not in aq? Is that reasonable?

Ex. 17.21 Use the functional abstraction laws to do the data refinement of
Section 17.6 in reverse: that is, show that the module of Figure 17.2 is a refinement
of that in Figure 17.4. Does that mean that the modules are equal? How does
equality differ from refinement?

Hint: Convert the assignments to specifications first.

Ex. 17.22 ©  In the example of Section 17.7.2 the function fr is left in the code,
but considerable trouble was taken to remove 1, | and . Why is fr acceptable
but the others not?

Ex. 17.23  Why is it acceptable to use linear search in the example of Section
17.7.2, instead of the more efficient binary search?

Ex. 17.24 ©  Let the abstract type be (again) a set as : set A and take the
concrete type to be a pair aq : seqy A; n : N with the functional abstraction being
as = set(aqtn). (Thus the data-type invariant is true.) Calculate data refinements
for the following:

1. a:[as £ {}, a € as] ;
2. a,as: [as #{}, a € as AN{a} Uas = asy] ;
3. as:=asU{a}; {#as < N} .

Hint: For the third, consider rewriting it as a specification.

Ex. 17.25 Q Justify the last step of the derivation of Section 17.7.4. What
might replace the ‘777" 7

Ex. 17.26 Q Use expand frame 8.3 to derive a law analogous to data-refine
specification 17.15 in which the abstract variable does not appear in the frame. Do
not assume that post contains no a.

FEz. 17.27 O  Suggest an example where the abstract command does not include

a in the frame, but the concrete refinement of it does nevertheless. (See Exercise
17.26.)

© Carroll Morgan 1990, 1994, 1998



FEzercises 183

FEz. 17.28 O A more abstract database type than those we investigated in Sec-
tion 15.3 would be K - D, a partial function from keys K to data D. Give a
specification, at that level, of a lookup operation which can be data-refined to the
specification you gave as your answer to Exercise 15.6. Write down the coupling
invariant and work through the data refinement.

Ex. 17.29 ©  Section 15.8.2 presented an iterative tree-summing program whose
code contained a sequence of trees. How might that be implemented in a more
conventional language that had only fixed-size arrays (for sequences) and records-
plus-pointers for trees? Would one have to change the specification?

Ex. 17.50 [s it a refinement to strengthen or to weaken coercions? (Recall
Exercise 1.13.)

Ezx. 17.31 Prove this equality:

Law 17.18 merge coercions

[post] [post’] = [post A post'] .
|

Ezx. 17.32 Show that augment assignment 17.8 indeed follows from augment
assignment 17.7.

Er. 17.53 Prove this law:

Law 17.19 introduce assumption

[post] T [post] {post}.

O

Ezx. 17.3/ Prove this law:

Law 17.20 remove coercion

{pre} [pre] C {pre}.

O

Ex. 17.35 © Prove this refinement:

r:=1

C if true > z:=1
| true = z:=-1
fi;

[z > 0] . (1)

If coercions were code, how would (i) above be executed? Hint: Consider back-
tracking.
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Chapter 18

Case study: Majority voting

Although our goal in program development is to reach code, there are reasons one
might want to go further: to increase efficiency is one; and a second reason is to
translate from one programming language into another. In this chapter, an ex-
ample more extended than usual, we show two successive program developments,
both successful. But the first, too inefficient (quadratic complexity), provides the
motivation for extra trouble and ingenuity pursued in the second (linear complex-
ity).

From the second attempt, however, we go much further; a series of carefully cho-
sen transformations in the spirit of Chapter 17 leads on to a program of unexpected
simplicity.

18.1 Refinement of code

One of our early examples of alternation was the following program fragment,
illustrating both nondeterminism and nontermination:

if2|lz—oz:i=2+2
] 3|z —>2z:=2+3
fi.
In spite of its being code, we may nevertheless need to refine it further, given the
demands of a particular programming language. As we saw in Exercise 4.5, one
possibility is
C “alternation guards 4.3”
if2jz —z:=z+2
l =2|z) = z:=2+3
fi
= “transliteration into C”
if (x%2 == 0) x=x/2; else x=x/3;
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Winning an election 185

Note that the above is a proper refinement: the final program does not equal the
original. If x = 6, the original program sets it either to 2 or to 3; but the refined
program sets it to 2. If z = 7, the original program can abort; the refined program
must terminate, setting it to 2.

The final phase of this chapter will be concerned with replacing code by code,
sometimes by simple refinement as above, sometimes by transformation (as within
modules). To begin, however, we set out the problem and follow a straightforward
and innocent approach to its development.

18.2 Winning an election

The strict majority of a bag of values is that value occurring with frequency strictly
more than half the size of the bag. If the values represented votes, the strict
majority value would identify the candidate, if any, that had an absolute majority.

Not every bag has a strict majority (just as not every election has an absolute
winner). For example, the strict majority in |A, B, A, C', A| is A, but neither the
empty bag nor | A, B, B, A| has a strict majority.

To be more specific, we define three predicates: first sm for strict majority; then
em for exists majority; and finally cm for conditional majority. It will be convenient
in the code to use a sequence rather than a bag, and so we suppose a sequence
as : seq T and value z : T, defining

smz as = as.x > Fas/2
emas = (Jz:T-smz as)
cmz as = emas = SmMZI as .

(Recall from p.81 that as.z is the number of occurrences of z in as, whether as is
a set or a bag.)

The task of our program will be to find a strict majority if there is one, termi-
nating whether there is one or not. (Thus if as contains no strict majority, the
program may set z at random, but still must terminate.) Here is our abstract
program:

var as :seqy 15 z: T-

z: [emz as| .
18.3 A straightforward attempt yields quadratic code
18.3.1 A simple invariant

We begin with our usual strategy, to establish the postcondition over longer and
longer prefixes:
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186  Case study: Majority voting

|[ vari:N-:

1:=0;
doi# N —
if —emasti — z:= as|i]
| smz asti — skip
fi;
ir=1+1
od

Figure 18.1 Summary of first refinements

C “iterate up” var 7 : N-

1:=0;
doi#N —
z: [emz asti , emz ast(i + 1)]; q
ti=1+1
od
C if —emasti — z: [memasti, cmz ast(i + 1)] (i)
| smz asti — z: [smz asti , cmz ast(i + 1)] (ii)
fi.

Note how the alternation exploits the disjunction inherent in cm z asts.
Now if there is no majority in asti, then the only possible majority in ast(i+1)
is as[i] itself. Hence

(i) C z:=uas[i] .
On the other hand, if z is the majority in asti, then either it is the majority in
ast(i + 1) as well (certainly if as[i] = z) or there is no majority in ast(i + 1) at
all (but only if as[i] # z). Hence

(ii) C skip .

The program so far is collected in Figure 18.1. Only the guards are left to do.

18.3.2 State transformation of local blocks

In Chapter 17, we showed how to transform the state of modules. The same
techniques apply to local blocks.
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A straightforward attempt yields quadratic code 187

[ vari,c: N;
initially ¢ = asti.z-

i,c:=0,0;
doi:#N —
if ¢ <i/2 =z, c:=asli], (asti).as[i] (iii)
| ¢>i/2— skip
fi;
if asfi] =2z = d,c:=i+1,c+1
| asli| #z —i:=i+1
fi
od

Figure 18.2 Introduction of count ¢

Recall Figures 16.2 and 16.3. A local block can be made into a module, then
transformed, then made back into a local block again. An initialisation may sud-
denly appear in the transformed block, of course. To simplify that, we introduce
this abbreviation:

Abbreviation 18.1 local block initialisation

|[ var [ : T'; initially inv - prog ||
= |[var[: T [inv]; prog]| .

O

(Abbreviation 18.1 also simplifies the translation between modules and local blocks.)

All the transformation laws of Chapter 17 carry over to local blocks. In fact,
even more is possible for local blocks: the coupling invariant can refer to global
variables as well (compare p.164 ‘any formula over the local and exported variables
of the module’). But we do not need that here.

Now we apply the above to Figure 18.1. We add a variable ¢ : N which counts
the occurrences of z in the prefix as?T: examined so far: the coupling invariant
is ¢ = asti.z. That gives the program of Figure 18.2. Though we include the
initialisation, Abbreviation 18.1 shows it to be unnecessary: it is subsumed by the
command ¢, c:=0,0.

The law alternation guards 4.3 has allowed the two guards to be simplified dra-
matically, to ¢ < /2 and ¢ > i/2. (See Exercise 18.5.) That leaves only the
refinement of (iii):

(iii) C z:=as|i];
c:=asti.x N
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188  Cuase study: Majority voting

C “invariant ¢ = asTj.z Aj <i’; var j : N-
j,c:=0,0;
doj #1i—
if z=uasjj] > c,ji=c+1,j+1
| z#as[jl =>j:=j+1
fi
od.

We have reached code. But its time complexity is quadratic: due to the iteration
appearing as a the refinement of (iii), the entire prefix asfi is re-examined to
compute ¢ for the newly chosen z.

18.4 A second attempt is faster
18.4.1 How to do better

The troublesome (iii) occurs in a command guarded by —em asti, which we did
not exploit. Can that reduce the time complexity? A crucial property of sm is that
for any sequences as, as’ and value z,

smz (as H as’) = smzasVsmz as' . (18.1)

If z is a majority in a concatenation, then it must be a majority in one part or the

other. Hence if z is a majority in as overall (that is, if smz as), but asti has no

majority (and —em as?i), then z must be a majority in the remainder asli (thus

smz asli). Thus under the given conditions, we can forget the prefix altogether!
A convenient consequence of the above is given in this lemma:

Lemma 18.1 For sequences as, as’,
—emas Acmz as’ = cmz (as+H as') .

Proof: Note that —=em as = —smz as. Now we consider the two cases in cm z as’.
First, if —emas’, then by Property (18.1) we have —em(as 4 as’), hence it
follows that cm z (as 4+ as’).
Second, if smz as’ then for all y # z we have =smy as’. Again by Property
(18.1), for all y # z that gives =smy (as + as’), hence finally cm z (as # as’).
(I

Lemma 18.1 leads us to this new development:

z: [emz as]
C “Lemma 18.17; var j : N
z,7: [ emas[0—j] Acmz as[j—N] |
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A second attempt is faster 189

[ var i,j,c: N

1,7,c:=0,0,0;
doi# N —
if c<(i—75)/2—j,z,c:=1,as]i],0
[ e¢>(i—j)/2 — skip
fi;
if asfi]=2z = i,c:=i+1,c+1
| asli| #z —i:=i+1
fi
od

Figure 18.3 Second attempt: linear code

I = —emas[0—j] Acmz as[j—i]
var i : N-
z,j,i: [[Ni=N]

M

“invariant I Aj <1 < N”
1,7:=0,0;
doi#N —
if —em as[0—j] A memas[j—i] —

z,7: [emas[0—j] A —emas[j—i], I[i\i+ 1]] (iv)
| —emas[0—=j] Asmz as[j—i] —

z,j: [memas[0—j] Asmz as[j—i], I[i\i+ 1]] (v)
fi;
ti=1+1

od

(iv) C j,z:=1, as[i]

=
N

skip .

Again we introduce ¢, this time with the coupling invariant ¢ = as[j—i].z; the
result is Figure 18.3. Note that again alternation guards 4.3 is used to simplify the
guards. (See Exercise 18.5.) Now the code has linear time complexity; but — as
we see below — it can be simplified dramatically.
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190  Case study: Majority voting

[ var i,j,c¢:N; d:Z-

i,7,¢,d:=0,0,0,0;

doi# N —
ifd<0—j,z,¢,d:=1,as[i],0,0
| d>0— skip
fi;
if as[i]=2z = i,c,d:=i+1,c+1,d+1
| asli| #z —i,d:=i+1,d—1
fi

od

Figure 18.4 Add variable d

18.5 Transformation of code
18.5.1 Representing two variables by one

The guards in Figure 18.3 can be further simplified by a state transformation. We
introduce a single variable d : Z using the coupling invariant d = 2¢ — (i — j);
then we remove ¢, j. First, the guards become d < 0 and d > 0, and the resulting
program is Figure 18.4. (The superfluous initialisation is omitted.) Then, removing
the auxiliary c, s gives Figure 18.5.

18.5.2 Laws of distribution

Inspection of Figure 18.5 reveals that the two alternations are not independent:
the d < 0 branch of the first cannot be followed by the as[i] # = branch of the
second. With the following distribution law we can exploit that:

Law 18.2 left-distribution of composition over alternation

if (] i - G; — branch;) fi; prog
= if (] i - G; — branch;; prog) fi .

O

First, we distribute ¢:=1 4+ 1 out of the second alternation; then we distribute
the second alternation into the first. The result is Figure 18.6.

In the first branch, we now have assignments before an alternation. We can use
the following law to simplify that:
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[ vari:N; d:Z-

i,d:=0,0;

doi# N —
if d<0—z,d:=as]i],0
| d>0— skip
fi;
if asfi] =2z =i, d:=i+1,d+1
| asli| #z —i,d:=i+1,d—1
fi

od

Figure 18.5 Remove auxiliary c, j

ifd<0—
z,d:=as[i],0;
if asfi] =2z > d:=d+1
| asli| ##z —>d:=d—1
fi

[ d>0—
if asfi] =2z > d:=d+1
| asli| ##z —>d:=d—1
fi

fi;

1i=1+1

Figure 18.6 Merge alternations

Law 18.3 right-distribution of assignment over alternation

r:=F; if (] i+ G; — branch;) fi
= if (] i+ Gi[z\E]| = z:=E; branch;) fi .

O

The result is Figure 18.7.
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192  Case study: Majority voting

ifd<0—

if true —» z,d:=as[i],0; d:=d +1
| false » z,d:=asli],0; d:=d —1
fi

[ d>0—

if asfi] =2z > d:=d+1
| asli| #z —>d:=d—1
fi

Figure 18.7 Distribute assignment over alternation

18.5.3 Laws of alternation

The true and false guards of Figure 18.7 are handled with these laws; the result is
Figure 18.8, in which we have merged the assignments as well.

Law 18.4 remove false guard

if ([ i - G; — branch;)
| false — branch
fi

= if (] i - G; — branch;) fi .

O

Law 18.5 remove alternation

if true — branch i = branch .

Now we flatten the alternations with the following law. The result is Figure 18.9.

Law 18.6 flatten nested alternations

if (] i+ G —if (] j- H; — branchy) fi) fi
= if (I:I 0,7 * Gi N Hj — bmnchzj) fi.
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if d<0—z,d:=uasi],1

[ d>0—
if asfi] =2z > d:=d+1
| asli| #z —d:=d—1
fi

Figure 18.8 Simplify alternation

ifd<0—z,d:=as|i],1

[ d>0ANasfi]=2—d:=d+1
[ d>0Aas[i]#z—>d:=d—1
fi

Figure 18.9 Flatten nested alternations

18.5.4 Introducing invariants

Inspection of Figure 18.9, recalling its surrounding text, suggests that d > 0 is
invariant. It is true initially, and is maintained by every assignment in the program.
That takes us to Figure 18.10. Note that the type of d is now N.

ifd=0—z,d:=uasi],1

[ d#0Aasfi]=2z—>d:=d+1
| d#0ANas[i] £z —d:=de1
fi

Figure 18.10 Introduce invariant d > 0
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ifd=0—z,d:=uasfi],d+1

[ d#0Aas[i]=2z— z,d:=as[i],d+1
| d#0ANas[i] £z —d:=de1
fi

Figure 18.11 Exploit guards

if d=0Vasji| =2 — z,d:=as[i],d+1
| d#0ANas[i] £z —d:=de1
fi

Figure 18.12 Collapse branches

In fact, invariant introduction is a special case of the add variable transforma-
tion: we introduce no variables, but have a coupling invariant nevertheless. The
law augment assignment 17.8 reduces to checking that assignments preserve the
invariant (the list ¢ is empty); the law augment guard 17.9 allows the invariant to
simplify the guards.

If we exploit the guards, we can reach Figure 18.11, in which we have made two
branches identical. The following law then takes Figure 18.11 to Figure 18.12:

Law 18.7 collapse identical branches

o

f (] i+ G;— branch;)
G — branch
G' — branch

m::

= if (] ¢ - G; — branch;)
GV G — branch

m::h
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|[ var i,d:N-

i,d:=0,0;
doi# N —
if d=0Vas[i|=z
then z,d:=as[i],d + 1
elsed:=dol
fi;
tr=1+1
od

Figure 18.13 Simplified code

18.6 Simplified code

With Figure 18.12 we reach the end of the development. The code is collected in
Figure 18.13, where we use the conventional if - --then - -else---end.
Curiously, we have iterative code but have ‘lost’ the invariant. Where has it
gone?
The last invariant quoted was on p.189:

J<i<N
—em as[0—]
cmz as[j—i] .

Introducing ¢ adds a conjunct to that; introducing d adds another:

J<i<N
—em as[0—]
cm z as[j—i]
c = as[j—i].x

d=2c—(i—j).
Removing ¢, 7 removes them from the invariant, leaving this:
j<i<N
—em as[0—]
de,j: N+ cmz as[j—1i] : (18.2)
c = as[j—i].z
d=2c—(i—}j)

Since an invariant is unaffected by refinements to the iteration body, formula (18.2)
is the invariant for the final program. (See Exercise 18.6.)
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18.7 Exercises

Ez. 18.1 ©  (From p.186) Prove that
—emasti = cmas[i] ast(i+1) .
Ez. 18.2  (From p.186) Prove that
smz ast = cmz ast(i+1).

Ez. 18.3 Why isn’t initially false a good idea in a local block? Hint: Recall
local block wnitialisation 18.1.

Fz. 18.4 ©  (From p.187) Work through the details of showing that transforma-
tion is valid for local blocks. Hint: Introduce a module with a single parameterless
procedure, called once.

Fr. 18.5 ©  Check the claims made about simplifying guards (pp. 187 and 189).

Ez. 18.6  Show that the monstrous formula (18.2) entails

1 < N
as[0—i].z < (i +d)/2
forall y # 2 as[0—i].y < (1 —d)/2.

Using that as an invariant, develop the code of Figure 18.13 directly.

Ex. 18.7  Use alternation guards 4.3, remove false guard 18.4, and remove alter-
nation 18.5 to prove this law:

Law 18.8 select true guard

if (] i - G; — branch;)
| true — branch
fi

C branch .
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Chapter 19

Origins and conclusions

The idea of our refinement calculus originated with Ralph Back [Bac80], and was
reinvented by Joseph Morris [Mor87] and by me [Mor88d]. In each case the context
was E.W. Dijkstra’s weakest precondition calculus [Dij76]. Similar ideas were put
forward by Dershowitz [Der83|.

Much work has been done since the crucial first step of considering both specifi-
cations and code to be programs. The effect has been to simplify, and make more
regular, much of the detail of constructing programs; and there are significant
implications for the practice of software engineering generally.

For example, none of the programs developed in this book has comments in its
code. Indeed, many of the developments never present the complete code at all;
and the result would probably be unreadable if they did.

Proper commenting and laying out of code is important when there is no rigorous
development history of the program: then, the code is all we have. If the source
code of a compiled program were discarded after its development, then certainly
commenting and layout of the machine code would be important.

Now we know, though, that code is not meant to be read: it is meant to be
executed by computer. And we have rigorous development histories: they can
be found, for example, in the case study chapters. In each of those there is a
sequence of refinement steps, every one justified by a refinement law, whose validity
is independent of the surrounding English text. The histories have the initial,
abstract, program at their beginning, and the final executable code is easily (even
mechanically) recoverable from them, at the end. They reveal the structure of the
program as well: logically related sections of code are identified simply by finding
a common ancestor. Furthermore, the development histories allow those programs
to be modified safely.

Return for example to the square root case study of Chapter 7, whose code is
collected in Figure 19.1. The comment suggests a possible modification: could we
choose some other p? The development history, collected in Figure 19.2, gives the
answer: the commented command in the code can be replaced by p : = r+41 without
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[ var ¢ : N
qg,r:=s+1,0;
dor+1+#q—
|[ var p: N

p:=(qg+r)+2 (* Choose p between r and q. %)
if s<p?—=q:=p
[ s>p?—r:=p
fi

od

Figure 19.1 Square root code (Chapter 7)

affecting the program’s correctness. The validity of the following refinement step
is all that is needed, and the rest of the program can be completely ignored:

pir+l<qg,r<p<gq C p:i=r+1.

No comment could ever have that credibility.

There are still good reasons for collecting code. One is that certain optimisations
are not possible until logically separate fragments are found to be executed close
together. That is like a peephole optimiser’s removing redundant loads to registers
from compiler-generated machine code: the opportunity is noticed only when the
machine code is assembled together. And those activities have more in common,
for both are carried out without any knowledge of the program’s purpose. It is
genuine post-processing.

For us, the documentation is the English text accompanying the development
history (including the quoted decorations on individual refinement steps). Because
it plays no role in the correctness of the refinements, we are free to tailor it to
specific needs. For teaching, it reveals the strategies used; for production programs,
it might contain hints for later modification (‘Binary chop’).

What of testing and debugging? They are still necessary. Three larger case
studies, in the remaining chapters, are presented after these conclusions because
they are significantly harder than the case studies earlier. The code of the first
was collected, transliterated by hand,! and then tested.

There was an error in the transliteration: a multiple assignment z, y: = E, F' was
translated in error to z:=FE; y:=F (the expression F' contained z). However,
such errors are easily detected, and even avoided, by incorporating the checks in
an automated transliterator.

!The programming language was Modula-2.
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var r,s : N

ri=13]

ri[r?<s < (r+1)?

var ¢ : N-

¢ r[rP<s<@Ar+1=q|

I = r2<s<q?

g, [IANT+1=¢q]

¢, [1];

qg,r:[I, INT+1=(]

dor+1#¢q —
grifr+1#q, 1, q—1<q—r

M M 11l

1M

od

var p : N-

prlr+l<q, r<p<gq;
grifr<p<gq,Il,q—r<gq~—n
ifs<p?—>qls<p’Ap<q, I, q<q)
[ s>p?—=rs>p’Ar<p, I, r<r]

1M

fi
(iii) C ¢,r:=s+1,0
(iv) C p:=(¢+r)+2  ‘Binary chop.’
(v) Egq:=p
(vi) C r:=p.

Figure 19.2 Square root development history

(iii)
<

A second error was due to a single mistake in the development, and that was
found by checking the refinement steps in detail without reading the English text.
Thus it is the development that is debugged: the thought of checking the code
itself was shockingly unpleasant — and in any case it was not at all clear how it

worked.

Those were the only errors, and ‘it ran third time’. But the point had been

made: mathematical rigour cannot eliminate mistakes entirely.
Nevertheless it does reduce their likelihood dramatically.
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Chapter 20

Case study: A paragraph problem

20.1 Even paragraphs

This case study, the first of three major studies with which we conclude, is based
on [Bir86]; like the two to follow, it is quite a lot more ambitious than our earlier
examples.

The problem itself seems simple: it is just the laying out of words into lines
and paragraphs. Compare the paragraphs of Figures 20.1 and 20.2. In simple
paragraphs, like Figure 20.1, each line is filled as much as possible before moving
on to the next. As a consequence, the minimum number of lines is used; but a
long word arriving near the end of a line can cause a large gap there.

In even paragraphs, like Figure 20.2, such gaps are reduced: space is distributed
over earlier lines in order to increase the length of a later line which would otherwise
be very short. We will develop a program that produces even paragraphs.

To start, we forget the actual words and just consider their lengths. Let the
sequence of word lengths to be laid out be ws, of type seqy N. We have a maximum
line width of M (characters), and we assume that all (word) lengths are non-zero
and no more than M:

NVw:ws-0<w< M) .

A paragraph of ws is a sequence of lines, and each line is a sequence of words. For
paragraph pss : seqseqN (remember we are considering only lengths, not actual
words), we have these conditions:

1. The paragraph pss contains exactly the lengths in ws, in their original order:
fl pss = ws. The function fl, flatten, is defined as follows:

flpss = (41s : pss) .

2. Each line of the paragraph contains at least one but no more than M char-
acters: (Vs :pss-0 <> Ils < M). We abbreviate that ok pss. The function

200



Even paragraphs 201

-ICompare the paragraphs of Figure 20.1 and +
-Figure 20.2. In simple paragraphs, like Figurek
—20.1, each line is filled as much as possible
-lbefore moving on to the next. As a =
-lconsequence, the minimum number of lines is F
-lused; but a long word arriving near the end off-
-a line can cause a large gap there. =

Figure 20.1 Simple paragraph

-ICompare the paragraphs of Figure 20.1 and
-Figure 20.2. In simple paragraphs, like
-Figure 20.1, each line is filled as much as
-lpossible before moving on to the next. As a
-lconsequence, the minimum number of lines is
-lused; but a long word arriving near the end of
-la line can cause a large gap there.

T T T T T T T

Figure 20.2 Even paragraph

> is defined as follows:
Yols = (+w:ls).

Suppose for example that ws = (2,1,1,3), and M = 3. Here are three para-
graphs of ws:

((2,1),(1),(3)) (simple)
((2),(1,1),(3)) (even)
((2),(1),(1),(3)) (neither simple nor even).

Figures 20.1 and 20.2 are paragraphs of the same words. But Figure 20.2 min-
imises the waste of the paragraph, where the waste is the size of the largest gap
left in any of its lines except the last:

wtpss = (Uls : frpss - M — ) Is) .

(Recall that fr takes the front of a sequence.) Now the minimum waste mw of a
sequence of word lengths is the least waste found in any of its paragraphs:

mw ws = (Mpss | fl pss = ws A ok pss « wt pss) .

The paragraph of Figure 20.1 has waste 12; the waste of Figure 20.2 is only 7,
which is minimal in that width for those words.
Our first step is to derive a program that calculates mw ws.
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202 Case study: A paragraph problem
20.2 The minimum waste

Here is the abstract program that calculates the waste that an even paragraph
would have.

var ws : seqy N;
mw, M : N;

and ws # )ANNVw:ws-0<w < M)-
mw : =mw ws .

The invariant expresses the conditions on ws and M: that ws is non-empty, no
word length in ws is 0, and no word length in ws exceeds M.

Rather than consider larger and larger prefixes of ws, we consider suffixes. That
is because the last line is treated specially: it does not contribute to the waste. So
we introduce a sequence sf (suffizes) to contain the minimum wastes of all suffixes
of ws; the needed value will be sf[0] finally.

C var sf :seqy N-
sf:[(Vi]0<i<N-sf[i] =mw(wsli))]; q
mw : = sf[0] .

The next few steps are the usual ones for developing a iteration. Note however
that the initialisation is j : = N — 1; that is because mw () is not defined.

C 1= Mi|lj<i<N-sfli]=mw(wsli))Aj<N-
sf+ [I[7\0]]
C varj: N
7,sf[N —1]:=N —1,0;
.778f[.7:N_17[7]:0] d
C “iterate down”
doj#0—
ji=i—1
sf= [I[j\j +1], 1] (i)
od .

Now we must change sf, but it is clear that we need change it only at index j.
So we introduce a new variable z to be finally assigned to sf[j]. That allows the
first command below to leave sf out of the frame.

(i) C var z : N-
v [T + 1], @ = mw(ws)] (i)
sflil = .
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To make progress now, we must look more closely at mw(wsl]j). From the
precondition we have 7 +1 < N, and we proceed

(s )
= (Mpss | fl pss = wslj A ok pss - wt pss)
= “because 7 < N, and so ws]j cannot be empty”
(Mis, pss’ | fI({ls) + pss') = wslj A ok({ls) H pss’)
wt((ls) # pss’)) .

In the last step, we replaced the bound variable pss by a concatenation (Is)+pss’,
using as justification that pss was not empty. The step is valid because the non-
empty lists pss and the pairs Is, pss’ can be put into 1-to-1 correspondence.

To avoid proliferating names, we now rename pss’ to pss again, and continue:

= (Mis,pss | flI({ls) H pss) = wslj A ok({ls) H pss)
wt((ls) H pss))
= “by definition of fl and ok”
Is H fl pss = wslj
(Mls, pss | { ok pss - wt((ls) # pss)) .
0<YIls<M

Now we replace Is by its length k. Again, there is a 1-to-1 correspondence, since
for any k, there is only one Is of length £ satisfying Is +fl pss = ws]j. That gives

= “replacing [s by its length £”
0<k<N-—j
flpss = wsl(j + k)
ok pss

YwsljTh <M

Now we will use the definition of wt, but it is defined only for non-empty se-
quences! That means the case K = N —j, which makes pss empty, must be handled
carefully.

If > wslj < M, then k can take the value N — j in the distributed minimum
above: > wsljThk < M will be true even when £ = N — j. But then pss will be
empty, and the waste wt({wslj1Tk) H pss) will be 0. Since all wastes are at least
0, the whole expression simplifies to that value:

= Case Y wsl) < M
0.

(Mk, pss | -wt((wsljTk) H pss)) .

In the other case, we can of course exclude £k = N — j since it is dealt with in the
first case. We have then, by definition of wt,

= Case Y wslj > M

0<k<N-—j

(M, pss | flpss = wsl(j + k) { M — > ws|jtk >
ok pss LI wtpss
Ywsljthk <M
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204 Case study: A paragraph problem

= “nesting the minima”
(Mk|0<k<N—-—jAYwsljth < M-
(Mpss | flpss = wsl(j + k) A ok pss-
(M — X wsljth) U wt pss))
= “distributing LI out of M”
(Mk|0<k<N—-—jAYwsljth < M-
M — 5 wsljTk
LI (Upss | flpss = wsl(j + k) A ok pss - wt pss) >
= “definition of mw”
(Mk|0<k<N—-—jAYwsljthk < M-
(M — X wsljth) Umw wsl(j + k)
= “replace k by k — 37
(Mk|j<k<NAYws[j—k]| < M-
(M — > ws[j—k]) Umw(wslk)) .

With the above, we have defined mw(ws|j) in terms of the minimum waste
mw (wslk) of shorter suffixes; we can now return to the development of the program.
Since the range condition Y- ws[j—k] < M is less likely to be true for greater values
of k, we start k£ at 7 + 1 and increase it. In our invariant also will be the sum s of
the segment ws[j—k] considered so far.

The case distinction will be made after we have calculated the minimum above,
since then the sum Y wsl]j will be available in s. So we continue

(ii) C var n,s: N
vyt [T\ +1] , 5 = mw(usl)]

-~ J<k<n M — 3 ws[j—k]
X_<|_|k | { S ws[j—k] <M { U mw(wslk) >
J=Ij\j+1]Az=XAs=>ws[jon|Aj+1<n<N-

1M

n,s,r:=j+ 1, ws[j|, M;

n,s,z: [J, JAN(n=NVs>M); Q
if s<M—z2:=0

| s> M — skip

fi

“invariant J, variant N — n”

don#NAs<M —
s, nENANs<SMANJT, Jn\n+1]]; q
n:=n+1

od

C s,z:=s+ws[n],zMN (M —s)Usf[n]) .

M

That completes the development of this section. In the next section we finish
the job, finding not only the minimum waste but a paragraph that produces it.
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Producing the even paragraph 205
20.3 Producing the even paragraph

Let the predicate ep, even paragraph, be defined as follows:

fl pss = ws
epws pss = ws = pss = () V ¢ ok pss
wt pss = mw ws .

We then have an abstract program for producing a minimum-waste paragraph
of a sequence of lengths ws:

var ws : seqy N;
M N,
pss : seqseqN;

and ws # ) ANVw:ws-0<w < M)-
pss: lep ws pss| .

This time we consider prefixes of ws; the even paragraph will be produced as
we go. The invariant is ‘if pss were extended by an even paragraph gss of the
remaining text wsli, the result pss+ ¢ss would be an even paragraph of the whole
text ws’. Here is the first step:

var ¢ : N
C N { (V gss - ep(wsli) gss = epws (pss H ¢ss))
I = . .
1< N
i,pss:=0,();
iypss: [I, I Ni= NJ <
C “invariant I, variant N — "
doi#N —
iypss:[i AN, I, ig < i <
od .

Unusually, increasing ¢ above will not necessarily just be a matter of adding 1:
the next line of pss could be longer than that. Instead, we introduce a variable j
to find the new value of i; the next line of pss is then ws[i—j].

C varj:N
Jili#NANIT,
ep(usl) gss
<V s {:> epws (pss H (ws[i—j]) H ¢ss) > ; (iii)

1 <3 <N
i, pss:=7j,pss H (ws[i—7]) .
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(iii) C “Exercise 20.1”
ji[i <N,
ep(wsL) gss
(V 955 {:> ep(wsli) ((ws[i—7]) + g¢ss) )
1 <jJ <N
The program above finds a first line in a paragraph of ws]i (which the develop-
ment has shown to be the nezt line in a paragraph of ws). If we know the minimum

waste of wsli, and all its suffixes, then that line is easily found: its sum is less
than M, and we must have either j = N or

mw(wsli) > (M — Y ws[i—j]) Umw(wslj) .
That leads to

= B() = (M — X wslin]) U mw(wsd)-
1 <jJ <N
Jjili <N, Sws[i—j] < M
j=NVmw(wsli) > E(j)

There may be several choices for the next line — but if we take the shortest,
we know its length can be no greater than M. Thus we strengthen the postcondi-
tion:

1 <j <N
Cjli<N, Vk-i<k<j=mw(wsli) < E(k))
j=NVmw(wsli)> E(j)

Introducing a variable s to hold the length of the developing line (used in E(j)),
we continue

var s: N
1 <jJ <N
J =23 (Vk-i<k<j=mw(wsli) < E(k)) -
s =Y wsli—j]
Jys:[it <N, JA(j=NVmw(wsli)> E(j))]
C j,s:=1i+ 1, ws[i];
gys:[d, JA(=NVmw(wsli) > E(j))] q
C “invariant J, variant N — j”
doj # N Amw(wsli) < E(j) —
j,s:=Jj+1,s+ ws[j]
od .

1M

And that completes the development — nearly. We still have the expressions
mw(wsl)i) and mw(ws]j) (in £(j)) in the guard of the iteration. But the program
of Section 20.2 establishes

(Vi |0<i<N-mw(wsli)=sf[i]) ,
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and so by sequentially composing the two programs we can replace the guard with
j# N Asfi] < (M = s) U of[j] -

And that does complete the development.

20.4 Exercises

Fz. 20.1 ©  Recall Specification (iii) (p.205). Its postcondition says

If the paragraph so far pss is extended by the line ws[i—j], and then
by any even paragraph ¢ss of what remains ws]j, the result is an even
paragraph of the entire input ws.

The postcondition of its following refinement says

The line ws[i—j], if extended by an even paragraph g¢ss of what re-
mains, is an even paragraph of the remaining input ws/|s.

Explain informally why the refinement is valid, then check it rigorously using
strengthen postcondition and weaken precondition.

Ez. 20.2 Collect the code developed in this chapter. Determine its time com-
plexity in terms of M and N. Is it linear? Quadratic? Worse?
Hint: The sum s must increase on each inner iteration.

Ez. 20.3 O Although there may be several even paragraphs of a single sequence
of words, the code we developed is deterministic. Where, in the development, was
the nondeterminism removed?

Ex. 20.4 O Modify the code of Exercise 20.2 so that, using the module of Figure
20.3, it actually reads and writes words from input and output. Your final program

should not contain any variables of type seqseq - -- (except c¢ss within the module
Words).
Hint: Don’t forget to account for spaces between words.
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module Words;
var css : seqseq CHAR,
procedure GetWord (result w: N) =
|[ var cs:seq CHAR-
if eof - w:=0
[ —eof —
input cs;
css = css H (cs);
w = Fcs
fi
II;

procedure PutWord
= output hd css;
css : =tl css;

procedure PutLine

~

= output nl
end

The character nl takes output to a new line.

Figure 20.3 Input/output module for words
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Chapter 21

Case study: The largest rectangle
under a histogram

The case study of this chapter is a notoriously tricky development, and the several
approaches to it include using auxiliary sequences or intermediate tree structures.
Here however we use proper (not tail-) recursion, for which simple variables suffice.!

The problem is to find the area of the largest rectangle under a given histogram,
as illustrated in Figures 21.1 and 21.2. The straightforward complexity of the
problem is given by the number of possible bases for the rectangle (=~ N?) times
the cost of examining each to determine its height (= N) — a cubic algorithm, in
other words.

A divide-and-conquer approach, in which we split the problem into smaller
pieces, will lead us first to N log N complexity. But, with some effort, we shall
do even better than that.

21.1 Laying the groundwork

Assume we have a sequence of non-negative integers hs : seqy N that represents a
histogram, as in Figure 21.1, under which we are to find the largest rectangular area,
as in Figure 21.2. Since the base of a largest rectangle is sufficient to determine
it completely (since it should be as high as the histogram will allow), we consider
the problem to be the finding of that base, represented below as a pair of indices
[ and h denoting its start and end:

(UlLh:N|I<h<N-(h—1)xMhs[l—h]) .
In fact, we will need to be more general, looking for largest rectangular areas under

subsegments hs[i—j] of the histogram; thus we define natural number Ir(i, ) to
be the largest rectangular area under the histogram hs[i—j] —

Ir(i,j) = (ULAh|i<I<h<j-(h—1)xNhs[l—h])

INaturally the solutions are related, since each approach more or less encodes the structures
found in the others.
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210 Case study: The largest rectangle under a histogram

hs = (2,1,4,5,1,3,3)

Figure 21.1 Example histogram

Rectangle under (2,1,4,5,1, 3, 3)

Figure 21.2 Largest rectangle

— and with that specify our program
a:=Ir(0,N),
in which the variable o : N will contain the result.
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Divide and conquer 211
21.2 Divide and conquer

A divide-and-conquer approach to this problem suggests finding a division of hs
into two pieces such that solutions to the pieces can be combined into a solution
for the whole. In fact we shall be especially interested in splitting at minimum
values of hs, because of the following property of Ir:

If hs[min] is a minimum value in hs, then the largest area of a rectangle
under As is the maximum of

1. the largest under hs[0—min],
2. the largest under hs[min + 1—N] and
3. the area given by base N and height hs[min].

Thus we need only find a minimum element hs[min] of hs, and then solve recursively
the subproblems hs[0—min] and hs[min+1— N] on either side. The property above
then gives us the solution for the whole.

A rough estimate for the average time required by the above approach, in terms
of N the size of hs, gives the recurrence

time N < N + 2 x time(N/2) ,

which leads to time N < Nlog N. (Think of the fact that the sequence can be
halved approximately log N times, and the time taken altogether on each level is
still proportional to the original N.)

With some iteration as well we can do even better than N log N, however. We
begin by seeking to maintain a ‘running maximum’ as longer and longer initial
segments of hs are considered. Our first step is therefore the usual

(i) C var i: N

a,t:=0,0;
doi:#N —

a,i:[i AN, i< NAa=1Ir(0,7), i < i (ii)
od .

But now we become more adventurous: bearing the property above in mind, we
might be interested in increasing ¢ in the iteration body by more than just 1. If
hs[i] becomes a minimum value for the longer segment — that is, if 4 is increased
to some j perhaps greater than i + 1, and we have that hs[i] is a minimum value
of the segment hs[0—j] — then it is particularly easy to re-establish a = Ir(0, ),
provided we can calculate Ir(i + 1,7) as required by Item 2 of the property. Thus
we proceed

(ii) C var b,j : N-
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212 Case study: The largest rectangle under a histogram

b,j
1 < N
1 <j<N ;
hs[i] < hs[0—7]
b=Ir(i +1,7)
a,i:=allblj X hs[i],j .

We have of necessity adopted an alternative layout for specifications in which the
components appear in the same order, but vertically instead of horizontally, and
new line is interpreted as conjunction.?

The first command sets j as suggested, and the second re-establishes the invari-
ant.

The conjunct b = Ir(i + 1,7) in the first command is where we foreshadow
a recursion, since it is effectively solving our original problem but on a smaller
segment. Given that a = Ir(0,4) (which was Item 1), that b = Ir(i +1,7) (given in
Item 2) and the explicit calculation j x hs[i], it can be seen that the assignment
command does re-establish the invariant a = Ir(0, ) for the now-larger i.

But it is not as simple as that, unfortunately; we do have a problem. The first
command above is infeasible, because its postcondition implies hs[i] < hs[0—i],
something which assignments only to b and j cannot affect.

21.3 Strengthening invariants to restore feasibility

The dead end is only apparent. If hs[i] < hs[0—j] is in the postcondition, but
cannot necessarily be established by changing only b and j, then the ‘missing
conjunct’ hs[i] < hs[0—i] must come from the precondition. How do we put it
there? (Strengthening the precondition is not an example of refinement!)

A similar problem occurs in proofs by mathematical induction, when the proof
that the inductive hypothesis holds at 141, given its truth at ¢, does not go through.
If the truth at ¢+ does imply truth at :+1, but the proof cannot be found, then either
the approach is unnecessarily difficult or the mathematician insufficiently skilled.
For us that would correspond to a feasible iteration body that we nevertheless could
not see how to develop further. If on the other hand the truth at 7 does not imply
truth at 7 + 1, then the inductive hypothesis may be too weak; strengthening it
makes its assumption at ¢ more powerful, but the obligation to re-prove it at 7 + 1
becomes accordingly more difficult. That corresponds to an iteration body that
is infeasible: strengthening the invariant then strengthens the precondition (as we
wanted, and makes development easier), but also strengthens the postcondition
(making development more difficult).

In both cases, induction and iteration, the necessary strengthening is usually not
apparent until the first attempt at proof or development has already failed; and

2That is rather like a Z schema, but with a frame.
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thus excursions like the above in Section 21.2 are not fruitless. In our case we have
discovered that we need the extra conjunct hs[i] < hs[0—i] in the precondition,
and so we simply place it in the invariant and try again: our iteration body (ii)
becomes (ii’) below, and we resume from there, performing the same first steps as
before:

a,1
i #=N
i <N .
a = 1Ir(0, ) (i)
hs[i] < hs[0—i]
L 10 < 1@
var b,j : N
i b
P <N
a=1r(0,17)
hs[i] < hs[0—i]
1 <j <N ; N
a=1r(0,17)
hs(j] < hs[0—j]
hsli] < hs[0—7]
b=1Ir(i +1,7)
a,i:=allbUj x hs[i],j
_ b j -
i <N
1 <j <N
hs[i] < hs[i +1-j] | - (i)
hs[j] < hsli]
b=1Ir(i+1,7)
The only non-immediate reasoning above relies on the implication

hs(i] < hs[0—i] A hs[i] < hs[i + 1—j] A hs[j] < hs[i]
= hs[j] < hs[0—j] A hs[i] < hs[0—7] .

Remember that hs[j] lies just beyond the segment hs[0—j]|, and that the first
conjunct hs[i] < hs[0—i] of the antecedent comes from the precondition.

The interesting thing about the last step is that a possible recursion has popped
up: our original problem is an instance of (iii), provided we define ‘formally’ that
hs[—1] and hs[N] are both —1 (any negative number would do). That is because
setting ¢ to —1 initially will force (iii) to establish j = N: the postcondition
contains hs[j] < hs[i], and we know that hs[0—N] > 0, and j cannot be —1. (It
must be strictly greater than i.) That is, the postcondition then implies

b=1Ir(0,N),

making b the value we are looking for.
That is all the excuse we need for a recursive procedure.

1M

1M

M
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21.4 Introducing recursion

Because our original problem has reappeared in (iii), we now aim explicitly for
recursion by making it a procedure. With some foresight,> we provide three pa-
rameters:

procedure Hist (value i : Z; result b,j : Z)

= (iii) .
Since our problem is now more general than before, however, we will need a gen-
eralisation of the property we exploited earlier; it is

lr(l,h) = 0,if [ =h; and
lr(l,h) = Ir(li)Ulr(i +1,h) U hs[i] x (b —1),
provided [ < i < h A hs[i] < hs[l—h].
Our original version of this simply had [ =0 and h = N.

Carrying on, the variant is 7, and it is already (in the precondition of (iii) above)
strictly bounded above by N:

(iii) C variant [ is i-

[ b,j
1=1< N
1 <3 <N

hsli] < hsli + 1—7]
hslj] < hs]i]
b=1Ir(: +1,7) .

And, forewarned by our having had to strengthen the invariant above, we choose
here an invariant ‘stronger than the obvious’ in that it includes the conjunct hs[j] <
hsli + 1—j]. The iteration will establish (the negation of its guard) that hs[j] <
hsli], giving

C “invariant is middle formula of iteration body”
b,j:=0,1+1;
do hs[j| > hs[i] —
. b
hs[j] > hs]i]

od

3The prophesy is only apparent, since we would later discover in any case what the parameters
should be.
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C var c,k: N

i ok -

IT<j<N
T<k<N ,
hs[j] < hs[j +1—=k] |’
hs[k] < hslj]
L e=Ir(G+1,k) |
byj:=bUclU(k—1i—1)xhs[j], k.

It has to be admitted that the second step above conceals a certain amount of
detailed working out of implications. But it was not altogether necessary to see
beforehand that they would work out, since the first stage of our development had
already suggested that we proceed that way, with the following assignment given
just a transliteration of the one we met before.

One genuinely obscure step, however, is the apparent strengthening of the pre-
condition, from 5 < N to 7 < N. That is necessary to match the offered recursion,
where ¢ < N occurs in the precondition; and it is justified by the fact that if
hs[j] > hsli], then j cannot be N.

And that’s it: we finish off with

C Hist (j,c, k) .

21.5 Wrapping up

We have now reached code, if by a slightly circuitous route. The first stage of the
development produced an iteration body which generalised the original problem,;
with that encouragement, we were able to continue the development by introducing
a recursion. Rather than calling the procedure within the iteration, however, we
now exploit the generalisation by discarding the outer iteration, replacing the whole
thing by a procedure call. In other words, we redo the first part of our development
in a stroke:

a:=Ir(0,N)

{ assume hs[—1] = hs[N] = —1
C .
var j : N

Specification (iii) above
C Hist (—1,a,j) .

The declaration of j is necessary only to supply the third parameter of the proce-
dure call: the result returned there is not used.

That concludes the development, and the code is shown in Figure 21.3. Exercise
21.1 investigates whether all this effort has improved the execution time over the
straightforward N log N.
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~

procedure Hist (value i : Z; result b,j : Z)
[ var ¢,k :N-
b,7:=0,1+1;
do hs[j| > hs[i] —
Hist (j, ¢, k);
byj:=bUclU(k—1i—1)x hs[j], k
od
Il

with ‘main program’ || var j : Z - Hist (—1,a,j) ]| -

Figure 21.3 Collected code.

21.6 Exercises

Ez. 21.1 ©  What is the running time of the algorithm, in terms of the size of
hs? Count calls of Hist. Hint: What values of ¢ are passed successively to Hist as
the algorithm executes?

FEz. 21.2 O Specify and develop a program that finds ‘the largest true rectangle’
in a two-dimensional array of Boolean values: the largest area of any rectangle,
within the array, that contains only true values.

Ex. 21.3 O Specify and develop a program that finds ‘the largest true square’ in
a two-dimensional array of Boolean values: the largest area of any square, within
the array, that contains only true values. Hint: There may be a much simpler
approach than was required for the largest true rectangle. What is the essential
property of a square that prevents that simpler approach working for rectangles as
well?
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Chapter 22

Case study: A malil system

This final case study contains little in the way of intricate algorithm development,
and not a single iterative invariant: it is a case study in specification itself.

In our earlier examples we did not have to worry about the construction of the
specification: it was given at the outset, usually of a program fragment or a single
procedure. In this chapter however we concern ourselves with the specification of
a whole ‘system’, which in our terms is a module encapsulating a state and all
operations on it. The increased size and possible complexity means that we cannot
take even our starting point for granted.

Electronic mail systems, our subject, have their main features in common but
vary a lot in the detail. Thus our initial specification, in Figure 22.1, is more or
less just the bare minimum that electronic mail could be said to comprise. But the
immediately following two sections nevertheless discuss deficiencies apparent even
at that level of abstraction, and propose design changes to avoid them.

Design changes are seldom without hazard, and several ‘opportunities’ arise on
our way to Figure 22.10, the ‘final’ specification, for changes that if implemented
would sooner or later prove disastrous. The dangers are revealed by exhaustive
— and sometimes exhausting — application of the rigorous techniques now at our
disposal: assumptions, coercions, refinement and above all data refinement.

The message of those sections is twofold: that even the apparently simple Figure
22.10 is too complex a specification to accept without some degree of rigorous
analysis; and that one way of producing even a simple specification is to develop
it in small steps from one that is simpler still.

The second part of the chapter makes the first few development steps, from
Figure 22.10 towards a conventional implementation of electronic mail in terms of
asynchronous delivery of message packets. The concurrency involved is limited, but
still enough to capture the notion of system actions carried out ‘in the background’
without the participation of the users.

The result of the development, delivered in Figure 22.15, is laden with the details
of headers, unique identifiers, packets and transmission delay — a very long way
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from the simple beginnings to which shortly we turn.

A warning is appropriate before we start: much of the low-level working is de-
tailed enough to skip at first reading, and just the beginning and end of ‘refinement
chains’ may be sufficient in many cases to maintain the continuity of the narrative.

22.1 A first specification

The system will provide just three procedures for passing messages:

e Send: A message and set of intended recipients are supplied; a ‘unique’
identifier is returned for that transmission. The identifier is used to refer to
the message while it remains in the system.

e Receive: The set of identifiers is returned for mail that has been received by
a given user, but not yet read.

e Read: The message text corresponding to a given identifier is presented to
its recipient, and the message is removed from the system.

Generally the system works as follows. A user me sends a message msg to a group
tos of other users using Procedure Send; its result parameter ¢d provides a unique
reference to that transmission, which could be used by the sender, for example, to
enquire after the status of a message or even to cancel it. (See Exercises 22.1 and
22.2.)

Procedure Receive is called by potential recipients who wish to know whether
mail has been sent to them. Its result is a set ids of transmission identifiers that
refer to messages sent to them that they have not yet read.

Supplying an identifier to Procedure Read will return the message text associated
with the identifier, and delete that message from the system.

Naturally the above brief description leaves a lot unsaid. Can a user send a
message to himself? What happens for example if an invalid identifier is supplied
to Read? Can a message be read by a user to whom it was not sent?” Does
the deleting of a message, once read in Read, remove copies of it sent to other
recipients?

It is extremely unlikely that an informal specification like the one above, no
matter how extensive, could ever answer all such questions. Even rigorous specifi-
cations, like the one we shall see shortly, are limited. But they do have a significant
advantage: their terms of reference are unambiguous, and within their declared
terms their answers are unambiguous® as well.

To construct an abstract module consistent with the informal description above
— our version of ‘rigorous specification’ here — we begin by choosing types. Let
users come from a type Usr, messages from Msg and identifiers from Id. The state
of the system could then be given by the two variables

'We regard nondeterminism in a specification as an unambiguous indication of freedom in the
design.
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msgs : Id + Msg and sent : Usr <> Id ,

in which the partial function msgs associates message identifiers with the corre-
sponding message text, and the relation sent records the (identifiers of) messages
sent but not yet read. By making sent a proper relation we allow many users
(many possible recipients) to be associated with a single identifier: that is how we
shall deal with ‘broadcasts’, in which the same message is sent to many different
users.

For the procedure Send we have the following parameters: which user is sending
the message; the message itself; to which users it is being sent; and (as a result
parameter) the identifier that subsequently can be used to refer to it. Here is the
procedure heading:

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id) .

Within the procedure we first have a new identifier selected, which then will be
associated both with the message and with the set of recipients. We use simply
i: [i ¢ dommsgs| for the selection, on the understanding that /d must be an in-
finite set so that the supply of unused identifiers can never ‘run out’. That does
raise several problems — but its simplicity is so appealing that we shall do it
nevertheless.

The first problem is that the above specification is infeasible: if executed in a
state in which dom msgs = Id (meaning ‘all identifiers in use’), its postcondition is
false. Informally we note however that if Id is infinite the module can never reach
such a state (provided msgs is initially empty); more rigorously, we could argue as
in Exercise 17.14, showing that dom msgs € finset Id is invariant for the module,
and by data refinement therefore being able to introduce dom msgs C Id into the
precondition.

The second problem, however, is that we cannot after all provide an infinite type
Id: the identifiers may have to be recovered.? But we will see much about that
later, and so for now leave things as they are.

Once the identifier is selected it is a straightforward matter to construct the nec-
cessary links to the recipients and the message text, and the body of the procedure
is as a whole

id: [id & dom msgs];
msgs|id] : = msg;
sent : = sent U (tos x {id}) .

Note that the assignment msgs[id]: = msg is just an abbreviation for the lengthier
msg : =msg[id : =msg], and in particular that id need not be in the domain of

2Tt is not altogether certain that they must, since for example using 64-bit unique identifiers
would be sufficient to support a traffic of one message per millisecond for more than 500 million
years. But other resource implications may make recovery of identifiers appropriate nevertheless.
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msgs for that to be meaningful. (See Exercise 9.14; in fact the previous command
ensures that id is not in the domain of msgs.)

Note also that in this simple system we are not bothering to record the sender
of the message.

For the procedure Receive we need only return for user me the set of identifiers of
messages waiting in sent to be read, and for that we use ids : = sent[me]. (Ignoring
for now the warning in Section 9.6.2, that unlikely-looking application sent[me] of
a relation to an element we take as an abbreviation for {7 : Id | (me, i) € sent}.)

Finally, procedure Read must retrieve a message, given its identifier, and here we
deal with some of the questions raised earlier. Suppose user me supplies identifier
id legitimately — that is, that (me, id) is an element of sent, meaning that me is
one of its intended recipients: then the message to be returned is found in msgs,
and msg : = msgs[id] will retrieve it. But if the identifier id is not legitimate for
me, what then? Making ‘legitimacy’ a precondition of the procedure (we need
only include the assumption {(me, id) € sent} as its first command) would relieve
the implementor of the obligation to deal with such matters: the procedure would
simply abort if the request were not legitimate.

A more forgiving design would insist on termination in any case (not aborting,
therefore); but it would allow any message whatsoever to be returned for illegiti-
mate requests. That ranges from the helpful ‘Identifier does not refer to a message
that has been received.” through the cryptic ‘MSGERR BAD ID’, finally to the mis-
chievous option of returning likely-looking but wholly invented messages that were
never sent. (That last could be useful if one user is suspected of trying to read
messages intended for others.) Thus we use the specification

msg: [(me, id) € sent = msg = msgs|id]| ,

leaving as the last detail the removal of the message from the system. The com-
mand sent : = sent — {(me, id)} does that, with the set subtraction as usual having
no effect on sent if the pair {(me, id)} is not there.

Straightforward initialisation to ‘the system is empty’ gives us finally the module
of Figure 22.1.

22.2 Reuse of identifiers

We considered briefly above the possible implementation problems caused by our
use of id: [id ¢ dom msgs] in Send: that an unending supply of identifiers is re-
quired. Looking at Read in Figure 22.1, however, we can see that once a message
has been read by all of its intended recipients, the antecedent (me, id) € sent = - --
of the first command will never again be true, and so subsequent calls for the same
identifier need not refer to msgs — the message texts can simply be invented.
Thus, provided that at the end of Read we have id ¢ ransent (because the last
(me, id) pair has just been removed), we can remove (id, msg) from msgs. That is
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module MailSys
var msgs : Id + Msg;
sent : Usr <> Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ dom msgs];
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Receive (value me : Usr; result ids : set Id)
= ids:= sent[me];

procedure Read (value me : Usr; id : Id; result msg: Msg)

= msg: [(me,id) € sent = msg = msgs[id]] ;
sent : = sent — {(me, id)};

initially msgs = sent = {}
end

Figure 22.1 Initial specification of mail system

procedure Read (value me : Usr; id : Id; result msg: Msg)
= msg: [(me,id) € sent = msg = msgs[id]] ;

sent : = sent — {(me, id)};

msgs : =(ran sent) < msgs q

Figure 22.2 Attempted recovery of Id’s

done with the <-marked command in the revised Read shown in Figure 22.2, which
removes all such pairs at once.

But on what basis have we been saying ‘should’ and ‘can’? Are we changing the
specification, or are we merely refining the original module of Figure 22.17 How
do we find out?

The effect of the change is to make the state component msgs a smaller function
than before, taking care however never to delete identifiers still in ran sent. We are
therefore led to consider a data refinement in which the abstract variable is msgs,

© Carroll Morgan 1990, 1994, 1998



222 Case study: A mail system

the concrete is msgs’, say, and the coupling invariant is
msgs' = (ran sent) < msgs . (22.1)

(In all of the data refinements of this chapter we shall use ‘primed’ names for
concrete variables; when the result of the data refinement is presented (and thus
the abstract variables are gone), we simply remove the primes. That will help
prevent a proliferation of names.)

We begin our data refinement with the last command of Read:

sent : = sent — {(me, id)}
becomes “augment assignment 17.8”
{msgs’ = (ran sent) < msgs};
sent, msgs' : = sent — {(me, id)},?;
[msgs’ = (ran sent) < msgs|
“see below”

M

{msgs' = (ran sent) < msgs};

sent : = sent — {(me, id)};

[(ran sent) <t msgs' = (ran sent) < msgs] ;
msgs': =(ran sent) < msgs’

“see below”

M

{msgs’ = (ran sent) < msgs};
(ran(sent — {(me, id)})) < msgs' |
= (ran(sent — {(me,id)})) < msgs |’
sent : = sent — {(me, id)};
msgs': =(ran sent) < msgs’
“remove coercion 17.20 mainly”

1M

sent : = sent — {(me, id)};
msgs': =(ran sent) < msgs’ .

Thus msgs’: =(ran sent) <l msgs’ has appeared, as desired.
The comments ‘see below’ refer to the first of the following two laws, used for
moving coercions ‘forward’ through a program:

Law 22.1 advance coercion

w:=FE [post] = [postiw\E]] w:=FE .

O

Law 22.2 advance assumption

w:=F {pre} = {pre[w\E]} w:=FE .

O
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Law 22.1 is often used to move a coercion forward through a program until it is
‘cancelled’ by an earlier, and weaker, assumption (as in remove coercion 17.20,
given that it is a refinement to weaken an assumption).

For the rest of the module, things are straightforward until finally we reach the
first command of Send. There, we have

id: [id ¢ dom msgs]
becomes “augment specification 17.6”
id, msgs'
msgs' = (ran sent) < msgs
msgs' = (ran sent) < msgs
1d & dom msgs
= “msgs, sent not in frame, thus msgs’ cannot change”

id: [msgs’ = (ran sent) < msgs , id ¢ dom msgs|
becomes “diminish specification 17.12”
i id
(I msgs - msgs’ = (ran sent) < msgs)
| (VY msgsy - msgs' = (ran sent) < msgsy = id ¢ dom msgsy) |
= “simplify precondition”

od 1
dom msgs’ C ran sent
| (V' msgsy « msgs' = (ran sent) <t msgsy = id ¢ dom msgsy) |
= “simplify postcondition”?

id: [dom msgs’ C ran sent , id € ran sent — dom msgs'] .

We have been reasoning with equality rather than refinement C, because we want
to be sure of finding a concrete command if there is one. (Using C we might
accidentally introduce infeasible behaviour and thus miss a data refinement that
would actually have been acceptable.)

In the last step, refinement C is not difficult to show. (The antecedent gives
dom msgs’ = ran sentNdom msgsy, and thus that ran sent—dom msgs’ and dom msgsy
are disjoint.) But for the equality we need also the reverse refinement J; for that
we choose an arbitrary m : Msg and define large = Id x {m}, whose domain is all
of Id. Taking msgsy to be msgs’ U (ran sent) < large satisfies the antecedent, and
the consequent is then equivalent to id € ran sent — dom msgs’.

But alas it has all in any case been for nothing, since our conclusion is not
feasible: the precondition allows dom msgs’ = ran sent, making the postcondition
false. Not having shown refinement with this particular coupling invariant does
not of course mean that no other would work; but it does encourage us to look
more closely at whether we are after all performing refinement.

3Some of these comments conceal quite a lot of non-trivial predicate calculation, in this case
discussed below. Similarly, ‘routine’ steps in engineering design sometimes generate quite tough
integrals to be calculated. But the principles remain simple.
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Persistent problems with
electronic funds transfer led
to chaos recently in the fi-
nancial markets. The cause
was traced to code in which
the ordinary electronic mail
system had been used to
generate the unique identi-
fiers needed for funds trans-
fers.

Noticing that the specifi-
cation of the mail system
guaranteed never to repeat
an identifier, a program-
mer had obtained them
as needed by broadcasting
null messages to mno-one.
(Such ‘empty broadcasts’
were, not surprisingly, par-
ticularly efficient and gener-
ated no network traffic.)
The mail system originally
was implemented with such
a large set of possible iden-
tifiers it was thought they

grew so rapidly, however,
that recently the system
was upgraded to recover old
identifiers — yet it was not
verified that the new system
was a refinement of the orig-
inal, and in fact it was not.
Had the absence of refine-
ment been noticed, the well-
established principles of the
Institute of Systems and
Software Engineering would
then have required a routine
check to be made for depen-
dencies on the original be-
haviour.

The institutions affected are
suing for damages; mean-
while the financial com-
munity waits anxiously for
other effects to come to
light.

would never run out. Use

Figure 22.3

In fact we are not proposing a refinement: the concrete module can return the
same id from Send on separate occasions, which is something the abstract module
cannot do. But does it really matter? See Figure 22.3 (and Exercise 22.3).

© Carroll Morgan 1990, 1994, 1998



A second specification: reuse 225

module MailSys
var msgs : Id + Msg;
sent : Usr <> Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran sent]; q
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Receive (value me : Usr; result ids : set Id)

~

= ids:= sent[me];

procedure Read (value me : Usr; id : Id; result msg: Msg)

= msg: [(me,id) € sent = msg = msgs[id]] ;
sent : = sent — {(me, id)};

initially msgs = sent = {}
end

Figure 22.4 Reuse of identifiers

22.3 A second specification: reuse

We are forced to admit that reusing identifiers requires a change in the specification
that is not a refinement of it. Having to accept therefore that we are still in the
‘design stage’, we consider a simpler change with the same effect: we leave Read
in its original state, changing Send instead so that ‘new’ identifiers are chosen in
fact simply outside the range of sent (since it is precisely the identifiers in sent
that refer to messages not yet read by all recipients). The result is shown in Figure
22.4, with the altered command marked.

A slightly unhelpful aspect of this new specification, and of the earlier attempt,
now comes to light: it is that the reuse of identifiers is enabled by Read as soon
as (me, id) is removed from sent. In an eventual implementation that would prob-
ably require communication, in some form, from the receiver back to the sender.
Our first specification did not require that, since the generation of identifiers was
managed locally in Send, an essentially self-contained activity.

A second unrealistic aspect of this specification is that messages arrive instantly
at the destination: a Receive no matter how quickly after a Send will return the
identifier of the newly sent message, and this too is unlikely to be implementable
in practice.
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procedure Receive (value me : Usr; result ids : set Id)
= ids: [ids C sent[me]] q

Figure 22.5 Attempt at specifying delayed receipt

Thus we are led to consider a third version of our specification.

22.4 A third specification: delay

In order to allow delay between sending a message and receiving it, one might
think of altering Receive as shown in Figure 22.5: only some, not necessarily all, of
the identifiers of sent messages are returned by Receive. The rest are ‘in transit’.

But if the subset returned is chosen afresh on each occasion, then messages
could be received only later to be ‘unreceived’ again. In order to specify that once
a message is received it stays received, we must introduce an extra variable recd
that records which messages have been received already. That would be necessary
in any case to make Read sensitive to whether a message has been received or not.

Thus while Send will use sent as before, in Read we find the new variable recd
instead. The transfer of messages between sent and recd occurs in Receive, as
shown in Figure 22.6. Note that in Read both sent and recd must have (me, id)
removed: if left in recd the message could be read again; if removed from recd but
left in sent it could be received again; and if left in both its identifier would never
be recovered.

The effect of the marked command in Receive is to allow recd to increase arbi-
trarily up to and including sent. (That includes not increasing at all.) As written,
however, the command is infeasible: one cannot achieve recdy C recd C sent while
changing only recd, unless recd C sent already. Fortunately recd C sent is an
invariant of the module: as before, a data refinement could introduce it explicitly,
allowing the command to be replaced by

recd: [recd C sent , recdy C recd C sent]| .

In the interests of brevity, however, we leave it as it is.
We will not attempt to show that Figure 22.6 refines our earlier Figure 22.4:
indeed it cannot, because with our new module the program fragment

Send (me, msg, {you},id); Receive (you, ids)

can terminate with id ¢ ids (because id is still in transit), and in our earlier
module that is not possible. Nevertheless we should investigate carefully what we
have done: is delay the only change we have made?
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module MailSys
var msgs : Id + Msg;
sent, recd : Usr < Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran sent];
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Receive (value me : Usr; result ids : set Id)

= recd: [recdy C recd C sent]; q
ids : = recd[me];

procedure Read (value me : Usr; id : Id; result msg : Msg)

= msg: [(me,id) € recd = msg = msgs|id]];
sent, recd : = sent — {(me, id)}, recd — {(me, id)};

initially msgs = sent = recd = {}
end

Figure 22.6 Delayed receipt of messages

For our investigation, we go back and alter (but do not necessarily refine) our
‘prompt’ module of Figure 22.4 to express our minimum expectations of introducing
delay. First, we must accept that Receive will not return all identifiers of messages
sent, and so we use in this ‘mock-up’ the alternative procedure in Figure 22.5.
Second, we split Read into two procedures: one for reading received messages, and
the other for reading (or attempting to read) not-yet-received ones. The former
should behave as Read does in Figure 22.4; the latter should return a randomly
chosen message, but change nothing else. The result is shown in Figure 22.7.

We should be quite clear about the role of Figure 22.7: it is not a refinement
of Figure 22.4 (a customer having specified a prompt mail system will not accept
an implementation containing delay); nor is it even a satisfactory specification of
a system with delay (it is too weak). It is only the most we can say about delay
while retaining the state of Figure 22.4.

Because we constructed our system with delay (Figure 22.6) essentially by guess-
work, we are now double-checking against Figure 22.7 to see whether it has those
‘reasonable’ properties at least.

To compare Figure 22.6 with Figure 22.7, we must make the same distinction
in Figure 22.6 between reading received messages and attempting to read not-yet-
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module MailSys
var msgs : Id + Msg;
sent : Usr <> Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran sent];
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Receive (value me : Usr; result ids : set Id)
= ids: [ids C sent[me]];

procedure ReadReceived (value me : Usr; id : Id;
result msg : Msg)
= msg: [(me,id) € sent = msg = msgs[id]] ;
sent : = sent — {(me, id)};

procedure ReadNotReceived (value me : Usr; id : Id,;
result msg : Msg)

= choose msg;

initially msgs = sent = {}
end

Figure 22.7 Delay ‘mock-up’ — compare Figure 22.4

received ones. We can do that with a pair of coercions.

Recall that a coercion [post] behaves like skip if post holds, and like magic
otherwise: if post does not hold then [post] is essentially ‘unexecutable’. We make
our procedures ReadReceived and ReadNotReceived from Figure 22.6 by exploiting
that unexecutability. The body of ReadReceived will be as for Read but with an
initial coercion expressing ‘the message has been received’:

[(me, id) € recd];
msg: [(me, id) € recd = msg = msgs[id]] ;
sent, recd : = sent — {(me, id)}, recd — {(me, id)} .

Naturally, we can use the coercion to simplify the rest of the procedure; we continue
from immediately above:

= “ntroduce assumption 17.19”
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[(me, id) € recd];

{(me,id) € recd};

msg: [(me, id) € recd = msg = msgs[id]] ;

sent, recd : = sent — {(me, id)}, recd — {(me, id)}
“absorb assumption 1.8”

[(me, id) € recd];

msg: [(me,id) € recd , (me,id) € recd = msg = msgs[id]] ;
sent, recd : = sent — {(me, id)}, recd — {(me, id)}
“Note this is equality”*

[(me, id) € recd];

msg : = msgs|id];

sent, recd : = sent — {(me, id)}, recd — {(me, id)} .

If disinclined to work through the above, one could simply note that the coercion
(me,id) € recd simplifies the following postcondition to msg = msgs|id].

The body of ReadNotReceived will have the opposite coercion added, and we are
able to simplify it as follows: the coercion can by introduce assumption 17.19 spawn
an assumption which can then be distributed throughout the procedure body,
exploiting the fact that almost all commands there change none of its variables.
We have

M

M

[((me, id) & recd];

msg: [(me, id) € recd = msg = msgs[id]] ;

sent, recd : = sent — {(me, id)}, recd — {(me, id)}
[(me, id) & recd];

{(me, id) & recd};

msg: [(me, id) € recd = msg = msgs[id]] ;

{(me, id) & recd};

sent, recd : = sent — {(me, id)}, recd — {(me, id)}
remove assumption 1.10
absorb assumption 1.8
leading assignment 8.5
[(me, id) & recd];

msg: [(me,id) & recd , (me,id) € recd = msg = msgs[id]] ;
sent : = sent — {(me, id)};

recd: [(me, id) & recd , recd = recdy — {(me, id)}]

[(me, id) & recd];

14 ”

msg: [true];
sent : = sent — {(me, id)};
skip

[(me, id) & recd];
choose msg;
sent : = sent — {(me, id)} .

4For simple refinement, rather than equality, the precondition would not have been necessary.
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module MailSys

var msgs : Id + Msg;
sent, recd : Usr < Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran sent];
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Receive (value me : Usr; result ids : set Id)

= recd: [recdy C recd C sent];
ids : = recd[me];

procedure ReadReceived (value me : Usr; id : Id;
result msg : Msg)
= [(me,id) € recd];
msg : = msgs|id];
sent, recd : = sent — {(me, id)}, recd — {(me, id)};

procedure ReadNotReceived (value me : Usr; id : Id,;
result msg : Msg)
= [(me, id) & recd);
choose msg;
sent : = sent — {(me, id)};

initially msgs = sent = recd = {}

end

Figure 22.8 Delayed receipt of messages, with ‘split’ Read

The result of all of these changes is shown in Figure 22.8, and we now — finally —
investigate whether Figure 22.7 is refined by Figure 22.8. We choose as coupling
invariant recd C sent, with recd being our concrete variable; we have no abstract
variable.

Procedure Send we can look at informally: imagine that abstract and concrete
states are coupled as above, and that we execute the abstract Send on the abstract
state and the concrete Send on the concrete state. Of the variables appearing in
the coupling invariant, only sent is modified, having tos x {id} added to it in both
cases. As sent is therefore not made smaller (actually it is made strictly bigger, but
that follows from earlier statements and we do not need it), the coupling invariant
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is maintained. We need also check that if the concrete Send can abort then so can
the abstract (but neither can), and that all concrete results (id in this case) are
possible also for the abstract: they are, as the choice of id depends only on sent,
unaffected by the data refinement.

For procedure Receive we reason

ids: [ids C sent[me]]
becomes
ids, recd: [recd C sent , recd C sent A ids C sent[me]]
C “following assignment 3.5”

recd: [recd C sent , recd C sent A recd[me] C sent[me]] ; q
ids : = recd|me]
C recd: [recdy C recd C sent] .

Procedure ReadReceived has two commands; for the first we proceed

msg: [(me, id) € sent = msg = msgs[id]]
becomes
msg, recd
recd C sent
recd C sent
(me, id) € sent = msg = msgs|id]
C “asstgnment 5.27

msg : = msgs|id|

C “introduce coercion 17.3”
[(me, id) € recd];
msg : = msgs[id] ,

and for the second command we have

sent : = sent — {(me, id)}
becomes “augment assignment 17.77
{recd C sent};
sent, recd : = sent — {(me,id)},?;
[recd C sent]
“advance coercion 22.17
{recd C sent};
[recd — {(me,id)} C sent — {(me, id)}];
sent, recd : = sent — {(me, id)}, recd — {(me, id)}
weaken assumption
remouve coercion 17.20
remove assumption 1.10

sent, recd : = sent — {(me, id)}, recd — {(me, id)} .

1M

14 ”

M

Finally we deal with ReadNotReceived:
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choose msg
becomes

{recd C sent};

msg, recd : =7,7;

[recd C sent] .

And here we have a problem. Our target code, in ReadNotReceived of Figure 22.8,
appears to alter sent; the above code does not. Doing our best to aim for the code
we want, we introduce the beginnings of our assignment to sent and continue:

= “sent: [sent = senty] = skip”
{recd C sent};
msg, recd : =7,7;
sent: [sent = senty] ;
[recd C sent]
= “following assignment 3.5”
{recd C sent};
msg, recd : =7,7;
[sent — {(me, id)} = sent];
sent : = sent — {(me, id)};
[recd C sent]
= “advance coercion 22.1”
{recd C sent};
[(me, id) & sent];
msg, recd : =7,7;
[recd C sent — {(me,id)}];
sent : = sent — {(me, id)}
“because recd : =7 C skip’
{recd C sent};
[(me, id) & sent];
[recd C sent — {(me, id)}];
choose msg;
sent : = sent — {(me, id)}
[(me, id) & sent];
choose msg;
sent : = sent — {(me, id)} .

Y

M

M

The last step of removing the assertion loses us no generality, since recd no longer
appears in the following code. The earlier refinement of recd : =7 to skip was forced
by the fact that recd is unchanged by the code of Figure 22.8.

The coercion [(me, id) & sent], however, is not the one we want. It is too strong,
and we can do nothing about it: stronger coercions cannot be refined into weaker
ones. Thus our actual behaviour differs from our desired behaviour precisely when
those two coercions differ: when (me, id) & recd (from Figure 22.8) but (me, id) €
sent (negating the above).
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The appellants withdrew
today in the CMSK (Com-
mon Mail-System Kernel)
case, after it was shown that
the specification of the sys-
tem indeed allowed acciden-
tal deletion of messages be-
fore they had been read.
Unexplained message loss
had been widely reported
and documented in the user
community, and in a joint
action by users of CMSK it
was claimed that since the
specification guaranteed no
loss, the manufacturer was
liable for damages.

did after all allow such un-
desirable behaviour, in par-
ticular when message iden-
tifiers were used for reading
before they had been reg-
istered as received: a ran-
domly chosen message was
in that case returned to
the user, and the legitimate
message was deleted from
the system.

Users generally are now
looking more closely at the
published specification of
CMSK, the future of which
has been thrown into in

doubt.

In a rare move in such cases,
the manufacturer showed
that its own specification

Figure 22.9

Thus we have not been able to show that Figure 22.8 refines 22.7, and must
conclude therefore that our introduction of delay, in Figure 22.6, may have brought
with it some unexpected consequences. Does that matter? Consider Figure 22.9
(and Exercise 22.4).

Now it is clear that the problem was essentially a coding trick that came back
to haunt us: in the original specification of Read we allowed the command

sent : = sent — {(me, id)}

to be executed even when (me, id) is not an element of sent. Later that became,
without our noticing it, “executing sent : = sent — {(me, id)} even when (me, id)
is not an element of recd” — altogether different, quite dangerous, and hard to
detect without some kind of formal analysis.

We remedy matters by using more straightforward coding in Read, as shown
in Figure 22.10. If we now performed the above analysis, the concrete procedure
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module MailSys
var msgs : Id + Msg;
sent, recd : Usr < Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran sent];
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Receive (value me : Usr; result ids : set Id)

= recd: [recdy C recd C sent];
ids : = recd[me];

procedure Read (value me : Usr; id : Id; result msg : Msg)
= if (me, id) € recd —
msg : = msgs[id];
sent, recd : = sent — {(me, id)}, recd — {(me, id)}
| (me,id) & recd — choose msg
fi;
initially msgs = sent = recd = {}
end

Figure 22.10 The ‘final’ specification

ReadNotReceived would simply be

[(me,id) & recd];
choose msg

which we could reach without difficulty by direct refinement from Figure 22.7.

22.5 A first development: asynchronous delivery

With Figure 22.10 we have — finally — a specification that describes a reasonably
realistic system in which messages may take some time to be delivered. We take
it as our ‘final’ specification. (Why the quotes? Very few specifications are never
changed, final or not.)

Our first move towards implementation will be concerned with the ‘delay’ built
in to Procedure Receive of Figure 22.10. That describes the user’s-eye view of it,
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procedure Deliver = recd: [recdy C recd C sent]

procedure Receive (value me : Usr; result ids : set Id)

~

= ids:=recd|me]

Figure 22.11 Asynchronous delivery, modifying Figure 22.10

but of course the delay does not necessarily happen in Receive itself; that is only
where it is noticed.

Through the implementor’s eyes instead, we would see messages moving towards
their destination even while no user-accessible procedures are called. The subset
relation in recd C sent merely reflects the effect of calling Receive before they have
arrived.

Our first development step is to introduce asynchronous message delivery, ‘in
the background’. Not having refinement rules for concurrency, however, we pro-
ceed informally: the actual delivery recd: [recdy C recd C sent] is relocated from
Procedure Receive into a new procedure Deliver which, it is understood, is called
‘by the operating system’ to move messages about. (Calls of Deliver are not even
seen by the users.) The result is shown in Figure 22.11; note that Deliver needs
no parameters.

With such a modest excursion into concurrency as this new module represents,
we need only require that in an actual implementation there never be destructive
interference between apparently concurrent calls on the procedures: a simple way
of doing that is to introduce mutual exclusion so that at any time at most one
procedure is active within it. In fact we would need to do that in any case —
even without asynchronous delivery — if we were to share the mail system module
between concurrently executing users.

Although we admit we are not strictly speaking implementing a refinement, we
still should strive for as much confidence as possible in justifying the new behaviour,
having learned our lessons in the scenarios of Figures 22.3 and 22.9 above. The key
change, the new procedure, is not visible to users at all; it is called, ‘in between’
users’ access to the module, by the operating system. Can we isolate that change,
bringing the rest within the reach of our rigorous techniques?

If we were to add an ‘asynchronous’ procedure Deliver to our specification,
Figure 22.10, we would only have to make its body skip to be sure that the change
would not affect the users’ perception of the module’s behaviour. (We would have
to ignore however the possibility that Deliver could be called ‘so often’ that users’
access to MailSys is forever delayed, just as we have already ignored such starvation
of one user by another.) Thus to justify the step we have just taken, we go back
and add
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procedure Deliver = skip

to Figure 22.10, and attempt to show that Figure 22.11 is a refinement of that. To
find a coupling invariant, imagine executions of the abstract and concrete Deliver
together: we can see that even if recd and recd’ were equal beforehand, afterwards
the concrete recd’ could have grown. Thus we choose recd as abstract variable,
introduce concrete variable recd’, and couple the two with

recd C recd’ C sent .

We look at the procedures in turn, taking a slightly informal view where matters
seem clear enough.

As earlier, we can look at Send informally: since sent is only increased, the
coupling invariant cannot be broken. For Deliver we must introduce a statement
allowing recd’ to grow, and we reason as follows:

skip
becomes “augment specification 17.6”
recd': [recd C recd' C sent , recd C recd’ C sent]
C recd': [recd) C recd’ C sent] .

In Receive we must on the other hand remove the statement affecting recd. We
have first

recd: [recdy C recd C sent|
becomes “augment specification 17.6”
recd, recd’
recd C recd’ C sent
recd C recd’” C sent
recdy C recd C sent
C skip .

Note that it is in that last step that we need recd’ C sent in the coupling invariant.

The second command is ids: = recd[me] and here, apparently, we have a prob-
lem. Naturally, we want for its concrete equivalent ids: = recd’me], but with our
coupling invariant recd C recd’ C sent we cannot show that the ids returned by
the concrete Receive could have been returned also by the abstract. If recd and
recd’ differ initially — and they may — then the concrete and abstract ids will
differ also.

On the other hand, we see that if the coupling invariant holds at the beginning
of the whole procedure, then any concrete choice of ids can be mimicked by the ab-
stract: the first abstract command could after all establish that recd = recd’. Thus
we can sidestep this difficulty by going back and data-refining the two commands
together, as follows:

recd: [recdy C recd C sent];
ids : = recd|me]
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= recd, ids: [recdy C recd C sent A ids = recd[me]]
becomes “augment specification 17.6”
recd, ids, recd’
recd C recd’” C sent
recd C recd’” C sent
recdy C recd C sent
ids = recd|[me]
C “again using recd’ C sent”

recd, ids : = recd’, recd'[me]
becomes “diminish assignment 17.13”

ids : = recd'[me] .

In Read, however, we have a problem we cannot sidestep. The guards of the
alternation make essential use of recd: we cannot replace them by guards involving
recd’ only, as recd’ is essentially an arbitrary superset of recd. We are stuck.

The difference between that and our earlier problem, with Receive, is that the
abstract Receive allowed a nondeterministic alteration of recd: deliveries could
occur there. But deliveries cannot occur in our abstract Read. Does it really
matter? See Figure 22.12 (and Exercise 22.5).

Thus our Figure 22.11 is not a refinement of Figure 22.10 with its extra

procedure Deliver = skip .

We are forced instead to add a third variable deld for ‘delivered’, independent of
sent and recd. Our proposed concrete module is shown in Figure 22.13.

To show refinement between the extended Figure 22.10 and Figure 22.13, our
coupling invariant is read C deld" C sent; there are no abstract variables. Arguing
informally, we can see that Send is successfully data-refined, since sent is only
increased. Similarly in Read, variables sent, deld’” and recd are decreased ‘in step’.
For Procedure Deliver we have

skip
becomes “augment specification 17.6”

deld'": [recd C deld' C sent , recd C deld' C sent|
C deld": [deld) C deld" C sent] .

Note that even though the last command appears miraculous, we can as in Sec-
tion 22.4 introduce a module invariant, in this case deld’ C sent (direct from the
coupling invariant in fact), that would allow us to write

deld": [deld" C sent , deldj C deld" C sent]

if we wished to.
Finally, for Receive we have

recd: [recdy C recd C sent|
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A large-scale com-
puter fraud was discovered
today, involving an account-
ing loophole in the national
electronic mail system.

It had been noticed that
messages could be read be-
fore their delivery was re-
ported. Believing their own
specification, however, the
mail authority had installed
accounting software only at
the actual point of reporting
delivery. Thus ‘unreported’
messages could be read free
of charge.

The loophole was exploited
by a company that offered
greatly reduced rates on
bulk electronic mail. Its
customers’ messages would
be collected and sent all
at once as a single very
long message. The iden-
tifier returned would then

be sent as the body of an
immediately following very
short message. Since the
mail system tended to allow
short messages to overtake
long ones, the second mes-
sage was often delivered be-
fore the first: the identifier
it contained would then be
used to read the first, by-
passing report of delivery —
and bypassing charging as
well.  The occasional fail-
ure of the second message
to overtake the first was eas-
ily covered by the enormous
profit made overall.

Figure 22.12

becomes “augment specification 17.6”

recd, deld’

recd C deld’ C sent

recd C deld’ C sent
recdy C recd C sent

C recd : = deld" .

and our data-refinement is proved. We therefore accept Figure 22.13 as our first
development step, introducing asynchronous delivery of messages.
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module MailSys
var msgs : Id + Msg;
sent, deld, recd : Usr <> Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran sent];
msgs|id] : = msg;
sent : = sent U (tos x {id});

procedure Deliver
= deld: [deldy C deld C sent]

procedure Receive (value me : Usr; result ids : set Id)
= recd : = deld;
ids : = recd|[me];

procedure Read (value me : Usr; id : Id; result msg: Msg)
= if (me,id) € recd —
msg : = msgs|id];
sent, deld, recd : =sent — {(me, id)},
deld — {(me, id)},
recd — {(me, id)}
| (me,id) & recd — choose msg
fi;
initially msgs = sent = deld = recd = {}
end

Figure 22.13 Asynchronous delivery — corrected

22.6 A second development: acknowledgements

In spite of our having introduced asynchronous delivery, the system is still cen-
tralised: variables sent, deld and recd each represent information that in a running
system would probably be physically distributed. In particular, the execution of
sent : = sent —{(me, id)} in Read can make an identifier available ‘instantaneously’
for reallocation by id: [id & ran sent] in Send.

We remedy those implementation problems as follows. A new variable used will
be introduced to record which identifiers may not yet be (re-)allocated. That frees
sent to represent, not all of the Usr x Id pairs in use, but now only those that have
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been sent but not yet delivered. Similarly deld will now represent those delivered
but not yet read. Finally, a new variable ackd will contain pairs that have been
read but are not yet available for reuse. (In effect they are acknowledgements ‘on
the way back’.) That last breaks the ‘instantaneous’ link referred to above.

The abstract variables are sent and deld (leaving recd as it is); the concrete are
used’, sent’, deld" and ackd’; and the coupling invariant is

sent = sent’' U deld' U recd
deld = deld' U recd
used' = sent U ackd’

disjoint sent’ deld’ recd ackd' .

We have thus a functional coupling invariant, with a data-type invariant showing
that the four sets listed are disjoint. The third conjunct can be seen as part of the
data-type invariant by taking the first conjunct into account. (Replace sent in the
third conjunct by sent’ U deld’ U recd.)

We begin the data refinement with Send (of Figure 22.13). In its first command
we can replace sent by used’, since the coupling invariant gives us that sent C used’.
The second command is unaffected. For the third we recall in an assumption that
id ¢ ran used’ is established by the new first command, and then we reason

{id & ran used'};

sent : = sent U (tos x {id})

simple specification 8.1 ”
data-refine specification 17.15

used’, sent’, deld’, ackd'
id ¢ ran used’

used' = sent’ U deld' U recd U ackd'

disjoint sent’ deld' recd ackd’
used' = sent’ U deld' U recd U ackd'

disjoint sent’ deld' recd ackd’

sent' U deld" U recd = sentf U deld} U recd U (tos x {id})
deld" U recd = deldj U recd

becomes “{

M

used’, sent’
id ¢ ran(deld" U recd U ackd")
disjoint sent’ deld' recd ackd’
used' = used} U (tos x {id})
disjoint sent’ deld' recd ackd’
sent’ = sent) U (tos x {id}) |
C sent', used : = sent U (tos x {id}), used" U (tos x {id}) .

In Deliver we have

deld: [deldy C deld C sent|
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becomes “data-refine specification 17.15”

i used’, deld’, sent’, ackd’

used’ = sent’ U deld" U recd U ackd'
disjoint sent’ deld’ recd ackd'

used’ = sent’ U deld" U recd U ackd'
disjoint sent’ deld’ recd ackd'
sent’ U deld" = senty U deld;)

I deld) C deld’

C var muis, auis : Usr <> Id-

muis, auis: [muis C sent’ A auis C ackd'];

sent’, ackd': = sent’ — muis, ackd" — auis;

deld', used' : = deld" U muis, used' — auis
The local variables muis and auis represent the arrival of new messages and ac-
knowledgements respectively; the former are added to deld’, and the latter deleted

from wused’.
In Receive we have

recd : = deld
becomes
recd, deld’

disjoint deld’ recd
deldy U recdy = deld" U recd

disjoint deld" recd

recd = deldj U recd,

C deld', recd : ={}, recd U deld" ,

and the second command is unchanged.

Finally, in Read we need be concerned only with the assignments to the three
sets, and we will need that (me, id) € recd (which we have from the guard); thus
we proceed

{(me,id) € recd};

sent, deld, recd : =sent — {(me, id)},
deld — {(me, id)},
recd — {(me, id)}

becomes
i recd, ackd' ]

(me, id) € recd
disjoint recd ackd’
recdy U ackd) = recd U ackd’
disjoint recd ackd'
recd = recdy — {(me, id)} J
C recd, ackd' :=recd — {(me,id)}, ackd' U {(me,id)} .

The result is Figure 22.14.
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module MailSys
var msgs : Id + Msg;
used, sent, deld, recd, ackd : Usr <> Id-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= id: [id & ran used];
msgs|id] : = msg;
sent, used : = sent U (tos x {id}), used U (tos x {id});

procedure Deliver
= |[ var muis, auis : Usr <> Id-
muis, auis: [muis C sent A auis C ackd);
sent, ackd : = sent — muis, ackd — auis;
deld, used : = deld U muis, used — auts
II;

procedure Receive (value me : Usr; result ids : set Id)
= deld, recd : ={}, recd U deld;
ids : = recd|[me];

procedure Read (value me : Usr; id : Id; result msg: Msg)
= if (me,id) € recd —
msg : = msgs[id];
recd, ackd : = recd — {(me, id)}, ackd U {(me, id)}
| (me,id) & recd — choose msg
fi;

initially msgs = used = sent = deld = recd = ackd = {}
end

Figure 22.14 Acknowledgements and distribution

22.7 The final development: packets

In a real mail system it would be the messages themselves that moved from place to
place, not just their identifiers, and it finally is time to develop our specification in
that direction. We introduce a type Pkt to represent both messages and acknow-
ledgements; the new concrete variables will be sets of those and the procedures
will, after data refinement, move packets between them:
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To Usr

type From = Usr;
Pkt = msg Id From To Msg | ack Id From To .

The type synonyms From and To are introduced to make the use of the two Usr
fields clear.

To express our coupling invariant — to recover the abstract variables from the
new concrete sets — we must define several projection functions that extract sets
of Usr x Id pairs from sets of packets:

mui, aui, ui : set Pkt —(Usr <> Id)

mui pp {i:Id;f: From;t: To;m:Msg|msgiftmepp-(ti)}
aui pp {i :1d; f: From;t:To|acki ftepp-(t,i)}
uipp = muipp U auipp .
We will need to express also that any given Usr x Id pair is represented uniquely

in a set of packets — that is, that there are never two distinct packets with the
same pair:

~
~

uilpp = (Vp,p :pp-ui{p} =ui{p'} = p=7p) .

And finally, we need a projection function to extract the message texts from our
packets:

im : set Pkt —(Id +» Msg)

~

impp = {i:1Id; f: From;t: To;m: Msg | msgiftmepp-(i,m)} .

Our abstract sent and ackd will be represented by the single concrete sent’, rep-
resenting the packets of either kind in transit, with the tags msg and ack available
to separate them; the coupling invariant is straightforward, if a bit lengthy:

sent = mui sent’
deld = mui deld’
recd = mui recd’
ackd = aui sent’

uil(sent' U deld" U recd")

msgs 2 im(sent’ U deld' U recd') .

The last conjunct states that our sets of packets do contain message bodies con-
sistent with msgs — and our aim is to remove msgs.

Data refinement of Send, Receive and Read is straightforward; and since the
coupling invariant allows msgs[id] in Read to be recovered from recd, we find that
msgs has become auxiliary and that we can remove it. It can be removed from
Send in any case.

For Deliver we first rewrite our abstract program slightly, anticipating that sent
and ackd will be collected together:
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|[ var muis, auis : Usr <> Id-
muis, auis: [muis C sent’ A auis C ackd];
sent, ackd : = sent — muis, ackd — auis;
deld, used : = deld U muis, used — auts

|

= |[ var uis, muis, auis : Usr <> Id-

uis: [uis C sent];
muis, auts : = uts N sent, uis N ackd;
sent, ackd : = sent — uis, ackd — auis;
deld, used : = deld U muis, used — auis .

J

For the data refinement we introduce concrete local variables pp, mpp and app to
replace the abstract local variables uis, muis and auis, with coupling invariant

ui pp = wis A mui mpp = muis A aui app = auis .

The assignment sent, ackd :=--- will be data-refined to a single assignment to
sent’, because it effectively represents the union of sent and ackd.
The result — our final module — is in Figure 22.15.

22.8 Exercises

Ex. 22.1 O Modify the original specification of Figure 22.1 to include a proce-
dure Cancel that can be used to remove all unreceived copies of a message from
the system. Does the specification contain enough detail to prevent ‘unauthorised’
removal?

Ex. 22.2  Modify the original specification of Figure 22.1 to include a procedure
Unread that can be used to determine which users have not yet read a given
message.

Ex. 22.3 O Explain precisely how the specification of Figure 22.1, as amended
in Figure 22.2, could have led to the scenario described in Figure 22.3.

Ez. 22.4 Explain precisely how the module of Figure 22.6 could have behaved
as suggested in the scenario described in Figure 22.9.

Ex. 22.5 Explain precisely how the module of Figure 22.10, as amended in
Figure 22.11, could have behaved as suggested in the scenario described in Figure
22.12.

FEz. 22.6  Imagine a building with one lift serving several floors. Outside the lift
door, on each floor, is a panel of buttons and lights with one button/light pair for
each floor. Inside the lift are no buttons or lights at all.
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module MailSys
type From = Usr;
To = Usr;

Pkt = msg Id From To Msg | ack From To Id;

var used : Usr < Id;
sent, deld, recd : set Pkt-

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= 4d: [id ¢ ran used];
used : = used U (tos x {id});
sent : = sent U {t : tos | msgid me t msg};

procedure Deliver
= |[ var pp, mpp, app : set Pkt-
pp: [pp C sent];
sent : = sent — pp;
mpp, app : = pp N ran msg, pp N ran ack;
deld, used : = deld U mpp, used — ui app

1l

procedure Receive (value me : Usr; result ids : set Id)
= deld, recd : ={}, recd U deld;
ids : =(ui recd)[me];

procedure Read (value me : Usr; id : Id; result msg: Msg)
= |[ var p: Pkt; u: Usr; -
if (me,id) € uirecd —
p,f,msg: [p = msgid f me msg A p € recd];
recd, sent : =recd — {p}, sent U {ack id f me}
| (me,id) & uirecd — choose msg
fi

IE

initially used = sent = deld = recd = {}
end

Figure 22.15 A refinement of Figure 22.10
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To use the lift one presses the button, next to the doors, for the desired desti-
nation; the corresponding light should light if it is not lit already. When the doors
open, one enters the lift in the hope that it will eventually visit that destination
(whose light should be lit).

Design a module based on the type

Floor = 0—F
that contains these procedures with the meanings informally indicated:

e Press (value f,b : Floor) — Press button b outside the lift doors on floor
f. (Called by lift user.)

e Check (value f,[: Floor; result b : Boolean) — Check whether the light
[ on floor f is lit. (Called by lift user.)

e Visit (result f : Floor) — Close the doors, select a floor f ‘randomly’
which it would be useful to visit, go there, and open the doors. (Called by
lift operator.)

Hint: There are probably unanswered questions about the informal specification
above; answer them yourself. Consider using set-valued variables inside the module.

Ex. 22.7  Let T be a set of telephones connected to an exchange that supports
conference calls, so that collections of (people using) telephones can hold group
conversations.

Declare a variable zns of appropriate type that could represent the set of con-
versations in progress at any moment; write then, in English and in mathematics,
an invariant that ensures there is no telephone in more than one conversation.

Now suppose rgs is to represent the set of conversations requested but not in
progress (thus ‘pending’). Specify and justify an operation (with the default pre-
condition, true)

zns, rqs: [777]

that connects as many new conversations as is possible without disturbing existing
conversations. Note that the invariant over zns must be respected. Hint: The set
zns should be made locally maximal in some sense.

Then use the structures above to supply (abstract) program text for the infor-
mally described module in Figure 22.16. (You need not fill in Connect, already
specified in the text above.)

Finally, give a sensible definition of a new procedure Chat (value ¢ : T) that
causes ¢t immediately to join a single ‘chat line’, able then to converse with all
others that have not executed HangUp since they last executed Chat. Modify your
other definitions if necessary (but the less, the better).

Ez. 22.8 O Show that Figure 22.10, the ‘final’ specification, is refined by Figure
22.17. Is that a problem?
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module TelephoneFEzrchange
var zns : 777
rqs . 777

procedure Request (value it : 777)

~

= “Request a conversation #t”;
procedure Connect = “described in the text”;

procedure Converse (value ¢ : T}
result ¢t : 777)
= “Identify all participants in any conversation involving t”;

procedure HangUp (value ¢ : T')

~

= “Withdraw ¢ from any conversation in which it is involved”;

initially “no conversations”
end

Note that

e A single telephone may be part of many requests (but of at most one con-
versation).

e (Connect may be thought of as being executed at suitable moments by the
exchange itself.

e HangUp should allow other participants in a conversation to continue.

Figure 22.16 Telephone module
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module MailSys
var used : set Id;

procedure Send (value me : Usr; msg : Msg; tos : set Usr;
result id : Id)
= id: & used,
used : = used U {id};

procedure Receive (value me : Usr; result ids : set Id)
= qds:={};

procedure Read (value me : Usr; id : Id; result msg: Msg)
= choose msg
end

Figure 22.17 An unexpected implementation
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Chapter 23

Semantics

23.1 Introduction

‘Semantics’ means meaning. In this final chapter we look back and examine the
mathematical meaning of our program development method.

There are several reasons for taking an interest in foundations. The first, for the
new reader in this subject, is to provide references to the research from which this
style of program development has arisen.

The second reason is to address the nervous reader: Why are these dozens of
laws necessarily consistent? Where have they come from? Why do they, or indeed
does refinement itself, have any connection with real programming?

Questions like those should not be asked during program development, for there
it is already too late; those who only apply the method need not read this chapter.
But those who select a program development method regard such questions as
crucial: they have to be sure that it works.

The answers are usually given by deciding first of all on a reasonable way of
viewing programs — in fact, a mathematical model for them. That model should
correspond closely with the way that computers operate, so that there is no doubt
about its appropriateness. (Otherwise the questions will only have been moved,
not answered.) Then the laws are checked, one by one, against the model. If the
check is passed, and one has accepted the model, then by that very fact one has
accepted the law also. As an example, we check assignment 5.2 in Section 23.3.3
below.

Our mathematical model is the predicate transformer, popularised by E.W. Di-
jkstra [Dij76]. The treatment of it below is brief, even condensed; for the novice,
pursuit of the introductory references is probably essential. Any of [Dij76, Gri81,
Heh84, Bac86, DF88] is a good starting point.
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250 Semantics
23.2 Predicate transformers

In Section 1.4.3 the operation of a specification was described as follows:

If the initial state satisfies the precondition then change only the vari-
ables listed in the frame so that the resulting final state satisfies the
postcondition.

In fact, that description could apply to the behaviour of any command: if for any
postcondition we know which preconditions will guarantee termination in a final
state satisfying the postcondition, then we say that we know the meaning of the
command.

For command prog and postcondition A, let

wp(prog, A)

be the weakest precondition sufficient to ensure termination in a state described by
A. In that way we can see prog as a predicate transformer, because it transforms
the postcondition A into the weakest precondition wp(prog, A). And with it we
know the meaning of prog: a precondition B will guarantee that prog terminates
in a state described by A precisely when

B = wp(prog, A) .

For example, the meaning of z: =1z + 1 is a predicate transformer that takes the
postcondition > 0 to the precondition z > 0, because that precondition is the
weakest one whose truth initially guarantees termination of z:=2x + 1 and truth
of £ > 0 finally. Thus z > 0 is the weakest precondition of z: =2z + 1 with respect
to z > 0, and we write

wp(z:=z+1,z>0) = z>0. (23.1)

The next section gives the meaning of our program development method in terms
of predicate transformers.

23.3 Semantic definitions

23.3.1 Guarded commands

Semantics for the ordinary guarded commands are introduced in [Dij76] and re-
peated in [Heh84, Gri81]. In [Bac86], similar definitions are given for Pascal. Here
for example we give the semantics of assignment:

Definition 23.1 assignment For any postcondition A,
wp(w:=FE,A) = Alw\E].

O
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wp(skip, A) = A
wp(abort, A) = false
wp(z:=E,A) = Alz\FE]

wp(P; @A) = wp(P,wp(Q, A))

= (Vi-Gy)
A (/\Z -G = wp(Pi,A))

Iteration do- - - od is a special case of recursion, dealt with in Section
23.3.9.

Figure 23.1 Predicate transformers for guarded commands

With Definition 23.1 we verify the claim (23.1) above:

wp(z:=z+ 1,2 >0)
= “assignment 23.17
(z > 0)[z\z + 1]
r+1>0
z>0.

Figure 23.1 gives predicate transformers for all the basic guarded commands
except iteration.

23.3.2 Specifications
Our most significant extension to the ordinary guarded commands is the specifica-
tion, and this is its meaning;:
Definition 23.2 specification
wp(w: [pre , post], A) = pre N (Y w - post = A)[v\v],

where the substitution [vp\v] replaces all initial variables by corresponding final
variables.
|

Note that initial variables vy never occur in postconditions A.
As an example of the above, suppose we use z: =1z + 1 to abbreviate

rilr=x+1Ve=15-1].

Then we have
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wp(r:=z+1,A)

wp(z: [z =2 +1Vz=u1—1],A)
trueA(Vz(z=m+1Vz=125—1)= A)[n\z]
“Predicate laws A.34, A.65”
Vz-z=mn+1=A)[n\zs]\Vz-z=120—1= A)[z\z]
“Predicate law A.56”

Alz\azo + Ulao\] A Alz\ao — 1[a0\7]

“A contains no zy”

Alz\z + 1] A A[z\z — 1] .

‘Specifications’ were first added to the guarded command language in [Bac78,
Bac80], though not in our form; in particular, miracles were not allowed (see Section
23.3.6 below). Later they appeared in [Mee79]; most recently they appear in
[Mor87, MR87, Mor88d, Bac88]. References [MR87, Mor88d] are closest to this
book.

23.3.3 Refinement

Refinement C is a relation between commands (just as < is a relation between
numbers): for any commands progl and prog2, either progl C prog2 holds or it
does not. This is the definition:

Definition 23.3 refinement For any commands progl and prog2, we say that progl
is refined by prog2, writing progl C prog2, exactly when for all postconditions A
we have

wp(progl, A) = wp(prog2, A) .

Definition 23.3 is used in all approaches to the refinement calculus (for example
[Bac80, MR87, Mor87, Mor88d|), and in other places as well [Heh84, Abr87]. It
seems to be the only reasonable definition for sequential program development
based on weakest preconditions.

With our definitions so far, we can see refinement in action. For example, it is
easy to verify both of these:

r:=zxzx1 C z:=x+1
r:=z£x1 C g:=2x—1.

More interesting, however, is showing the proof of one of our laws. Suppose we
have w = wyg A pre = post[w\ E], the proviso of assignment 5.2; then we reason
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wp(w: [pre , post],.A)

“specification 23.2”

pre A (Y w - post = A) [vo\v]

“Predicate law A.56; pre contains no vy”
(Vuy+vp=v=pre N(Vw - post = A))
“assumed proviso; vy includes wy”

(Vg v = v = postfw\E] A (Vw - post = A))
“Predicate law A.86”

(Vg » v = w9 = postfw\E] A (post{w\E] = Alw\FE]))
(Vv v =1 = Aw\E])

“A, E contain no v,”

Alw\E]

“assignment 23.17

wp(w:=E, A) .

T (/A

With that, and refinement 23.3, we have proved assignment 5.2.

But we have done more: we have shown how to prove a law which formerly we
had to take on faith. Such proofs have been used to establish the consistency of
all the laws in this book, ensuring that no contradictions can occur. And new laws
can be added, supported by similar proofs.

23.3.4 Local variables

Local variable declarations are code, and their meaning is this:

Definition 23.4 local variable
wp(|[ var z - prog ||, A) = (V& - wp(prog, A)),

provided A contains no free z.
(Il

Definition 23.4 is well known but not often quoted. The proviso, similar to others

below, is easily circumvented by renaming z in prog to some other fresh variable.
Typed local variables are discussed in Section 23.3.11.

23.3.5 Logical constants

Logical constant declarations are not code, but they have meaning nevertheless:

Definition 23.5 logical constant

wp(|[ con z - prog ]|, A) = (Fz - wp(prog, A)),
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provided A contains no free z.
(Il

Definition 23.5 is not so well known; it appears in [MG90]. In [Mor]| it is in-
troduced specifically for procedures. Our use of it is independent of procedures:
we make precise the long-established use of logical constants for referring in the
postcondition to initial values. Other uses have been discovered, in data refinement
[MG90] for example.

As noted in [MG90], logical constants do not satisfy E.W. Dijkstra’s Property 3
[Dij76, p.18]: that is, they do not distribute conjunction.

23.3.6 Feasibility

A command is feasible if it obeys the Law of the Ezcluded Miracle [Dij76, p.18].
That gives the following definition:

Definition 23.6 feasibility Command prog is feasible exactly when
wp(prog, false) = false .

Otherwise it is infeasible.
(I

Infeasible commands, because they break the law, are called miracles. They were
introduced in [Mor87, Mor88d], and in [Nel89] (but not for refinement). Miracles
are used also in [Abr87], and in [Mor88b] for data refinement.

It is easy to show that miracles refine only to miracles (just apply the definitions
above), and hence never to code: E.W. Dijkstra’s law paraphrased reads ‘all code
is feasible’.

23.3.7 Annotations

These definitions follow from the above, given assumption 1.6 and coercion 17.1.
Assumptions are defined independently in [Mor87, Bac88, MV89]; coercions are
defined in [MV89].

Definition 23.7 assumption
wp({pre}, A) = pre N A .
a

Definition 23.8 coercion Provided post contains no initial variables,
wp([post], A) = post = A .
(Il

All assertions are feasible; no coercion is feasible except [true].
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23.3.8 Substitutions

The following definitions come from [Mor88c|:
Definition 23.9 substitution by value
wp(prog[value f\E], A) = wp(prog, A)[f\E],

provided f does not occur free in A.
(Il

Definition 23.10 substitution by result
wp(prog[result f\a], A) = (Vf - wp(prog, Ala\[])),

provided f does not occur free in A.
(I

Definition 23.11 substitution by value-result
wp(prog[value result f\a], A) = wp(prog, Ala\f])[f\a],

provided f does not occur free in A.
(Il

Those three definitions account for all the simple substitution laws of Chapter
11. Procedures and parameters are treated in [Bac87, Mor] also.

23.3.9 Recursion

This is the standard definition:

Definition 23.12 recursion Let C(p) be a program fragment in which the name p
appears. Then

re p-C(p) er

is the least-refined program fiz such that C(fiz) = fiz.
O

Take re p - p er, for example. Since prog = prog holds for all programs prog, the
fiz in Definition 23.12 is in this case the least-refined of all programs: it is abort.
Definition 23.12 gives indirectly the meaning of iteration, since iteration can be
viewed as a certain kind of recursion:
do G —» progod = re P-
if G then prog; P fi
er .

The meaning above generalises the standard meaning of iteration [Dij76, Gri81]
in a way first explored in [Boo82]. Recursion is treated in [Nel89], and recursive
procedures in [Bac87, Mor|. Recursion is much used in [Heh84].
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23.3.10 Data refinement

Data refinement is abundantly defined; our definition appears in [GM91, Mor88a,
Mor89, MG90, CUS89]:

Definition 23.13 data refinement Let a be a list of variables called abstract, let
c be a list of variables called concrete, and let I be a formula called the coupling
invariant. Then command progA is data-refined to progC by a, c, I exactly when
for all postconditions A not containing ¢ we have

(Fa-IAwp(progA, A)) = wp(progC,(Fa-INA)).

O

The approach of Chapter 17 is based mainly on [Mor88a, MG90].

23.3.11 Types

A precise treatment of types, and invariants, appears in [MV89], where the semantic
function wp is extended to take them into account. The effect is roughly as follows.

Typed local variable and logical constant declarations are a combination of an
untyped declaration and the imposition of a local invariant in which the type
information appears. For example, the typed declaration n : N appears as n € N
in the local invariant. At any point in a program, the surrounding local invariants
are conjoined and called the context, and the semantic function wp takes that
context as an extra argument.

In a context C, commands behave as if C' were assumed initially (aborting
otherwise), and they are guaranteed to establish C' if they terminate. For specifi-
cations, that effect is gained by imagining the context conjoined to both pre- and
postcondition. Thus in the context z > 0 we have

r:=z+1
=z (r=5+1Vr=um—1]
= “impose invariant in pre- and postcondition”
>0, 2>20AN(z=25+1Vz=u15—1)
=ifr>0—-z:=2—-1
] 2>20—>z:=2+1
fi.

(The last equality can be shown using weakest preconditions directly; our laws
would show only refinement.)

Note that the alternation above can abort when z < 0 initially, and when z = 0
initially the possibility z: =2 — 1 is automatically avoided.

Commands that cannot avoid breaking the invariant go ahead and break it, but
establish it too: thus they are miracles. For example, in the same context we have
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r:=-—1

= z: [z = —1]

= “impose invariant in pre- and postcondition”
(>0, >0Az=—1]

= z: [z >0, false] .

Thus z:=—1, normally called ill-typed, is just a miracle when the declaration
z : N is in effect: type checking is just feasibility checking.

Local invariants resulting from type declarations are called tmplicit; those in-
troduced by and are called explicit. Explicit local invariants are not code; they
are removed by laws that distribute them through compound programs towards
atomic components. Removing a local invariant immediately surrounding, say, an
assignment amounts only to checking that the assignment preserves it.
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Appendix A

Some laws for predicate
calculation

This collection of laws is drawn from [MS89].

A.1 Some propositional laws

Throughout this section A, B are C denote formulae of predicate calculus. The laws
are propositional because they do not deal with the quantification or substitution

of variables.

A.1.1 Conjunction and disjunction

The propositional connectives for conjunction, A, and disjunction, V, are idempo-
tent, commutative, associative and absorptive, and they distribute through each

other.

Idempotence of A and VvV
Conjunction and disjunction are idempotent connectives:

ANA = A = AV A.

Commutativity of A\ and V

Conjunction and disjunction are commutative connectives:

ANB = BAA
AVB = BV A.

Associativity of A and V
Conjunction and disjunction are associative connectives:

ANBAC) = (AANB)AC

258
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Av(BvC) = (AvB)VvC. (A.5)

Laws A.1 to A.5 mean that we can ignore duplication, order and bracketing in
conjunctions A A B A --- AC and disjunctions AV BV ---VC.

Absorption laws
Sometimes terms can be removed immediately from expressions involving both
conjunctions and disjunctions. This is absorption:

ANAVB) = A = AV(AAB). (A.6)

Distributive laws

The distribution of A through V is similar to the distribution of multiplication over
addition in arithmetic. But in logic distribution goes both ways, so that V also
distributes through A:

AN(BVC) = (AANB)V(AAC)
AV (BAC) = (AVB)A(AVC).

>
o0 N

A.1.2 Constants and negation

Units and zeroes

In ordinary multiplication, ¢ x 1 = a and a x 0 = 0. We say therefore that 1 is
a unit and 0 a zero of multiplication. Similarly, the predicate constant true is the
unit of A and the zero of Vv:

ANtrue = A (A.9)
AVtrue = true. (A.10)

The constant false is the unit of V and the zero of A:
A Afalse = false (A.11)
Avfalse = A. (A.12)

Negation as complement
Negation — acts as a complement:

—true = false (A.13)
—false = true (A.14)
AN-A = false (A.15)
AV-A = true. (A.16)

Furthermore it is an involution:

—A = A. (A.17)
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And it satisfies de Morgan’s laws:
“(AAB) = -AV-B (A.18)
—“(AVB) = -AA-B. (A.19)

Further absorptive laws
With negation, we have two more absorptive laws:

AV (-mAANB) = AVEB (A.20
AN(RAVB) = AANB. (A.21

~—— ~—

A.1.3 Normal forms

A formula is in disjunctive normal form if it is a finite disjunction of other formulae
each of which is, in turn, a conjunction of simple formulae. Conjunctive normal
form is defined complementarily.

Laws A.7, A.8, A.18 and A.19 allow us to convert any proposition to either
disjunctive or conjunctive normal form, as we choose, and laws A.15 and A.16
serve to remove adjacent complementary formulae. For example,

AN-(BACAA)

“Predicate law A.18”

AN (=BV=CV-A)

“Predicate law A.7”
(AAN=B)V(AAN-C)V (AAN-A)
“Predicate law A.15”

(AAN=B)V (AA-C) V false
“Predicate law A.12”

(AAN=B)V (AN-C) .

The second formula above is in conjunctive normal form and the third, fourth, and
fifth are in disjunctive normal form.

A.1.4 Implication

Implication = satisfies the law

A=B = -AVEB, (A.22)
and that leads on to these laws:
A=A = true (A.23)
A=B = —(AA-B) (A.24)
“(A=B) = AA-B (A.25)
A=B = -B=-A. (A.26)
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The last above is called the contrapositive law. Useful special cases of those are

A= true = true (A.27)
true=A4 = A (A.28)
A=false = -A (A.29)
false = A = true (A.30)
A=-A = -A (A.31)
A=A = A. (A.32)

These next two laws distribute implication = through conjunction and disjunc-
tion:

C=AAB) = (C=A)A(C=B) (A.33)
(AvB)=C = (A=C)AN(B=2C) (A.34)
C=(AvVB) = (C=A) V(=B (A.35)
(AAB)=C = (A=C)Vv(B=C). (A.36)

Extra laws of implication
The following laws are useful in showing that successive hypotheses may be con-
joined or even reversed:

A= (B=C) = AAB)=C = B=(A=C). (A.37)
And the next law is the basis of definition by cases:

A=BA(~A=C) = (AAB)V(=ANAC). (A.38)

A.1.5 Equivalence

Equivalence satisfies this law:

AeB = (A= B)A(B=A) (A.39)
= (AAB)V=(AVB) (A.40)
= A& -B. (A.41)

Also we have these:
As A = true (A.42)
A& -A = false (A.43)
Astrue = A (A.44)
A& false = -A (A.45)
A=B = A& (AADB) (A.46)
B=>A = A& (AVEB) (A.47)
Av(B&C) = (AvB)< (AVC). (A.48)
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Equivalence is commutative and associative

AsB = B A (A.49)
Ae (B&C) = (AeB)<C, (A.50

~—

and, from Laws A.46 and A.47, it satisfies E.W. Dijkstra’s Golden Rule:

> ANB& A BsS AVE. (A.51)

A.2 Some predicate laws

In this section we consider laws concerning the universal and existential quantifiers,
vV and 4. Although for most practical purposes we wish the quantification to be
typed

where T denotes a type and A is a formula, for simplicity we state our laws using
untyped quantifications:

(Vz-A)
(Fz-A) .

Each can be converted to a law for typed quantification by uniform addition of
type information, provided the type is non-empty. These laws enable us to convert
between the two styles:

Vz:T-A) = Vz-ze€T= A (A.52)
(Fz:T-A) (Fz-zeTNA), (A.53)

where the simple formula z € T means ‘z is in the set 7".
For more general constraints than typing, we have these abbreviations as well,
which include a range formula R:

Vz:T|R-A) = (Vz-2€ TAR=A) (A.54)
(Fz:T|R-A Fz-z€ TARANA) , (A.55)

Note that A.52 and A.54 introduce implication, but A.53 and A.55 introduce
conjunction.
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A.2.1 Substitution

Recall (p.8) that we write substitution of a term E for a variable z in a formula .4
as

Alz\E]

and we write the multiple substitution of terms F and F for variables x and y
respectively as

Alz,y\E, F] .

In simple cases, such substitutions just replace the variable by the term. In
more complex cases, however, we must take account of whether variables are free
or bound. Suppose, for example, that A is the formula (Fz -z # y) Az = y; then

Alz\y] is Qe -z#y)Ay=y,
but Aly\z] is (Fz-z#z)ANz=1x.

The variable z is fresh, not appearing in A. In the first case, z # y is unaffected
because that occurrence of z is bound by dz. Indeed, since we could have used
any other letter (except y) without affecting the meaning of the formula — and
it would not have been replaced in that case — we do not replace it in this case
either. The occurrence of z in x = y is free, however, and the substitution occurs.

In the second case, since both occurrences of y are free, both are replaced by z.
But on the left we must not ‘accidentally’ quantify over the newly introduced z —
(32 - z # z) would be wrong — so we change (before the substitution) the bound
z to a fresh variable z.

Finally, note that multiple substitution can differ from successive substitution:

Aly\elle\y] is Bz-2#y)Ay=y
but Aly,z\z,y] is Fz-z#z)Ay==zx.

A.2.2 The one-point laws

These laws allow quantifiers to be eliminated in many cases. They are called ‘one-
point’ because the bound variable is constrained to take one value exactly. If z
does not occur (free) in the term E, then

Vz-z=E=A) =A[z\E]= (Jz-z=EANA) . (A.56)
If the type T in Laws A.52 and A.53 is finite, say {a, b}, we have the similar

Vz:{a,b}-A) = Alz\a] AN A[z\D] (A.57)
(3z:{a,b}-A) = Alz\a]V Alz\D] . (A.58)
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Those can be extended to larger (but still finite) types {a, b, -+, z}. We are led to
think, informally, of universal and existential quantification as infinite conjunction

and disjunction respectively over all the constants of our logic:

(Vz :N-.A) represents A(0) A A(1):---
(Jz:N-A) represents A(0)V A(1)---

A.2.3 Quantifiers alone

Quantification is idempotent:

Vz-NVz-A) = Vz-A)
(Fz-3Fz-A) = Fz-A) .

Extending de Morgan’s laws A.18 and A.19, we have
-(Vz-A) = (Fz--A)

-(Jz-A) = Vz--A) .
A.2.4 Extending the commutative laws

These laws extend the commutativity of A and V:

Vz-(Vy-A) =Vz,y-A)= (Vy-(Vz-A)

(Fz-3Fy-A) =03z,y-A)= (Fy-3z-A) .

A.2.5 Quantifiers accompanied

Extending the associative and previous laws,
Vz-AAB) = (Vz-A)A((Vz-B)
(Fz-AVvB) = (3z-A) Vv (Iz-B)
Fz-A=B) = Vz-A) = 3z-B) .

(A.63

~—

(A.65)
(A.66)
(A.67)

Here are weaker laws (using = rather than =) which are nonetheless useful:

Vz-A) = (Fz-A
Vz-A)VvV{Vz-B) = (Vz-AVB)
Vz-A=B) = (Vz-A) = (Vz-B)
Fz-AAB) = (Fz-A)A3Fz-B)
(Fz-A)=3Fz-B) = (Jz-A=B)
By (o A) = (Vo-(Gy-A) .
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A.2.6 Manipulation of quantifiers

If a variable has no free occurrences, its quantification is superfluous:

(Vz-A) =A if z is not free in A (A.74)
(Fz-A) =A if zisnot free in A . (A.75)

Other useful laws of this kind are the following, many of which are specialisations
of laws A.65 to A.67. In each case, z must not be free in the formula N:

(Vz- N AB) = NANz-B) (A.76)
(Vz-NVB) = NV (Vz-B) (A.77)
(Vz N = B) = N = (Vz-B) (A.78)
Vz- A= N) = Fz-A) =N (A.79)
(Fz - N AB) = N A3z B) (A.80)
(Fz-NVDB) = NV (3z-B) (A.81)
(Fz-N = B) = N = (Jz-B) (A.82)
(Fz-A=N) = Vz-A) =N . (A.83)

Bound variables can be renamed, as long as the new name does not conflict with
existing names:

Vz-A)= (Vy-Alz\y]) if yis not free in A (A.84)
(Fz-A)= (Jy-Alz\y]) if yis not free in A . (A.85)

Finally, we have for any term FE,

Vz-A) = Alr\E] (A.86)
AZ\E] = (3z-A) . (A.87)

If A is true for all z, then it is true for F in particular; and if A is true for F, then
certainly it is true for some z.
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Appendix B

Answers to some exercises

Those adopting the book for teaching may obtain a complete set of answers from
the author.

Chapter 1

Answer 1.1 (p.13) The number of refinement steps has nothing to do with close-
ness to code. Refinement is a relation between the meanings of programs; code is
a description of the way in which programs can be written. Here is a refinement
‘from code’:

abort C [0§x§9, yzzx].

Answer 1.2 (p.13) The new specification is the following:
y: [ISQ, (x<0:>y:0)/\(x20:>y2:x)].
Note that the original could abort if z < 0 initially.

Answer 1.4 (p.13) The valid ones are 1, 4, 5 and 7. (But you need strengthen
postcondition 5.1 to show number 7.)

Answer 1.7 (p.14) On the left, the client cannot assume that z will not change;
on the right, he can. But what is wrong with the following counter argument?

On the right, the client cannot assume that x will change; on the left,
he can.

Answer 1.8 (p.14)

266
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1<9=Fy:R-(z<0=y=0)A(z>0=y?=1x))
“Exercise 2.9”
Ay:R-(z<0=y=0)A(z>0=y*=1))
“Exercise 2.11”
(z<0=3y:R-y=0)A(z>0=Fy:R-y>=1))
true A (z >0= (Jy:R-y? =1))

“property of R”

true .

il

il

Answer 1.10 (p.14) From feasibility 1.4, we must prove that
1>0 = (Jy:R-y*=zAy>0).

But that is not true, since the right-hand side is equivalent to z > 0.
Informally, the program, when z = 0, must establish y = 0 (because 0? = 0)
and y > 0 (in the postcondition) simultaneously.

Answer 1.11 (p.14) It is feasible (false implies anything); it is never guaranteed
to terminate. Hence it is abort. That it can change w is suggested by the remark
on p.12 concerning the behaviour of abort. See also Exercise 8.8.

Answer 1.12 (p.14) Executing a false assumption causes the program to abort,
and that does change the program (unless it would have aborted anyway). But a
false assumption can be placed at a point which is never executed; there, it has no
effect (and little value).

Answer 1.13 (p.14) Assumptions may be weakened; the program is refined be-
cause it assumes less.

Answer 1.14 (p.14)
{pre'} {pre}
= “assumption 1.6”

{pre'}; : [pre , true]
= “absorb assumption 1.8”

: [pre! A pre , true]
= “assumption 1.6”

{pre’ A pre} .

Answer 1.17 (p.15) Remember that anything is refined (trivially) by itself.

Answer 1.18 (p.15) The law strengthen postcondition 1.1 requires post = true;
the law weaken precondition 1.2 requires false = pre. Both hold.
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Chapter 2

Answer 2.3 (p.25) The propositional formulae are 1 and 7. Number 2 is a
variable; number 3 is an English word. Number 6 is a statement about two simple
formulae.

Answer 2.5 (p.26)

(Vi:Z-eveniVoddi)

(Vm:N-oddm = (3n:N-evenn Am =n+1))
(Ji:Z-eveniAN—(dn:N-oddnAi=mn+1))
(

—“(Fi:Z-(Vj:Z-i<j))
Vr:R.-r>0=(3s:R-0<s<r))

SERA e

Answer 2.6 (p.26) (Jy-(Vz-A=2=y)).

Answer 2.8 (p.26) We have for the first formula
A B A = (B = A

true | true || true true true true true
true | false | true true false true true
false | true || false true true false false
false | false || false true false true false

/I\

The indicated column is all true.
The other formulae are done similarly.

Answer 2.9 (p.26) Exercise 2.8 showed that A = (B = A) is true in all states;
that’s what A = B = A means.

Answer 2.10 (p.26)

(Fz-(A=B)A(—A=C))
“Predicate law A.38”
(Fz- AANBV-ANC)

“Predicate law A.66”
(Fz-AAB)V (Tz--ANC) .

Answer 2.12 (p.26)

(Fa-(Vb-A)
= “Predicate law A.74”
(Vb (Fa-(Vb-.A)))
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= “Predicate law A.86”
(Vb:(Ja-A) .

The converse is not true. (Try it.)

Chapter 3

Answer 3.3 (p.34)

rr=X, z=X"
C “sequential composition 3.3”

z=X,z=X?; (i)
z: [t = X%, z = X1 (ii)
(i) C z:=2?
(i) C z:=22.

Answer 3.6 (p.34)

r,y,t:lt=XANy=Y , z=Y ANy =X]
“sequential composition 3.3”

oy, lt=XANy=Y , t=Y ANy=X]|;
r,y,t:[t=YANy=X, =Y ANy=X]

C “asstignment 1.3”
r,y,tlt=XANy=Y , t=Y ANy=X]|; <
r:=1
C “sequential composition 3.3”
r,y,t:lt=XANy=Y ,z=XANt=Y];
r,y,tlr=XAt=Y , t=Y ANy =X]
C “asstgnment 1.3”
ti=y;
y:=x .

Answer 3.7 (p.35)

z,y,t:=y,z,”?

“open assignment 3.17

Y, ti=y,2,y

= “aim for leading t:=y”
z,y,t:=t[t\yl,z,y

= “leading assignment 3.6”
tr=y;
T,y:=1t,

1M
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= “gpecial case of Law 3.6; ¢ contains no y”

=y
T
.

8@
I

Answer 3.8 (p.35)

w, z: [pre , post|
C “sequential composition 3.3”

w, z: [pre , post[z\E]|;

w, z: [post[z\E] , post| q
Cz:=F.

Chapter 4

Answer 4.1 (p.39)

r:=absy
Cify>0—u2:[y>0, x=absy| (i)
[ y<0—2z:[y<0, z=absy] (ii)
fi
(i) C z:=y
(i) C z:=—y.

Answer 4.4 (p.39) Write prog as w: [pre , post], and use absorb assumption 1.8
everywhere. Then use weaken precondition 1.2 and the fact that A = B implies
A= ANB.

Chapter 5

Answer 5.2 (p.47) Let I abbreviate the invariant n # 0 A (pt N < ptn). The
development then continues

Cn:[l, IAN=(2]n)
C “invariant I, variant n”
do2|n—
n:[2|n, nZ0A(ptN < ptn), 0<n < n q
od
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Cni=n+2.
It is the same code as before.

Answer 5.3 (p.47) The laws used are sequential composition 3.3 and strengthen
postcondition 1.1. Continuing,

(i) C “assignment 1.3”

f:=1
(ii) C “invariant f x n! = F, variant n”
don#0—
n,fin#0, fxnl=F, 0<n<ng N
od
C “following assignment 3.5”
n,fin#O0ANfxnl=F,
fx(n=1)1=FA0<n-—1<mn; Q
n:=n-—1

C “contract frame 5.4”
finZO0ANfxnl=F, fx(n—-1)!=F|
C “weaken precondition 1.2”
lfxnx(n=1D!'=F, fx(n—-1)=F]
C “assignment 1.3”

_f::fxn.

Answer 5.4 (p.48) First we strengthen the postcondition, then we weaken the
precondition. The conditions of strengthen postcondition 5.1 require

0<z<Y[Y\w]AO0<z=1y>=21)
= yl=z.

The law weaken precondition 1.2 requires the trivial 0 < z < 9 = true. Together
they give the derivation

y: [0<z <9, y?=1]
C “strengthen postcondition 5.17
y:[0<2<9,0< 2= y?=1]
C “weaken precondition 1.2”

y: [y* =] .
Why is the order of the laws (5.1 before 1.2) important?
Answer 5.5 (p.48)

1. Use assignment 5.2: the condition is y > 2y = y > .
2. Use assignment 5.2: the condition is 7y < 0 = —xy > 1p.

© Carroll Morgan 1990, 1994, 1998



272  Answers for Chapter 5

3. Use assignment 5.2: the condition is true = yo = yo A 1y = 2y.
4. Use assignment 5.2: the conditionis g =X +1= 2+ 1= X + 2.
5. jr=X+1,1z=X+2]
C “strengthen postcondition 5.17, 1o = X +1Ax =19+1 = =X +2
rjr=X+1, z=u+1]
C “weaken precondition 1.27
o jr=10+1] .
6. T [z = 29 + 2]

1M

con X-
T [ =19+ 1];
jr=X+1,1z=X+2] q
C “as in 5 above”
oz =2 +1] .
This required the more advanced sequential composition 8.4. What did you
use?

Answer 5.6 (p.48) The law would be as follows:

Law B.1 initialised iteration Provided inv contains no initial variables,

w: [pre , inv A =G|
C w: [pre , inv];
do G —» w: [GAinv, invA(0<V < Vp)] od.
a

The expression V is the variant.

Answer 5.8 (p.49) Conjuncts (5.8) and (5.9) of the invariant are sufficient to en-
sure requirement (5.7) of a fair handing-out, taking into account that the iteration
body is executed exactly C' times.

For requirement (5.6) it would be enough to know that s = 0 on termination,
since conjunct (5.10) of the invariant then suffices. Unfortunately, the negated
guard gives us ¢ = 0, not s = 0.

We choose a slightly different invariant therefore, to get around that problem.
Since by the quoted properties of | | we have

15/C] < s/l =15/C] <s/ec,
and similarly for (5.9), we replace (5.8) and (5.9) by the single

cx |S/C| <s<ex[S/C]. (B.1)
Then ¢ = 0 (from termination of the iteration) together with (B.1), gives us s = 0,

which is what we needed.
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Now we must consider maintenance of the invariant. Conjunct (5.10) is main-
tained by the combination of ‘hand out ¢’ and s:=s — ¢ in the body. For (B.1) we
must show that the iteration body refines

c,s,t: [(B.1), (B.1)] . (i)
Following assignment gives us

(i) Tt [(B1), (c—1)x|S/C]<s—t<(c—1)x[S/C]] (ii)

c,s:=c—1,8s—1
and, leaving aside the ‘hand out’, we could strengthen the postcondition to reach

(i) & [ls/c] <t <[s/c]]

provided

[s/c] <t <T[s/c]
N ex|S/Cl<s<ex[S/C] (B.2)
= (c—=1)x|S/C]<s—t<(c—1)x[S/C].

Claim (B.2) is really the core of the problem; it is the key mathematical fact,
finally extracted from the details of programming. To finish off, consider the fol-
lowing:

(c—=1)x |[S/C|] <s—t
& “t < [s/c] in antecedent”
(c—1)x|S/C| <s—][s/c]
= [s/c]<s—(c—1)x|S/C]
= “property of [ ]”
sfe<s—(c—1)x|5/C]
“iteration guard ensures ¢ # (”
(c—=1)x |[S/C] <(c—1)xs/c
& “even when ¢ =117
1S/C] <s/c
“c # 0 again”
cx|S/C] <s,

which is given to us in the antecedent of Claim (B.2): it is part of the invariant.
The other inequality is handled similarly.

This has been a simple problem, but not an easy one; and that is often the case.
Finding an invariant, and then discovering an inexorable proof that it is the correct
invariant, can take a very long time. In spite of that, one should aim to make the
resulting reasoning so clear and polished that its checking is very short. Then —
and only then — is the correctness of the program finally ‘obvious’.
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Chapter 6

Answer 6.3 (p.61) It follows fromn e NAz=n= 2z2>0.

Answer 6.5 (p.61) We would use var ¢ : N; and ¢ = 3. The remaining difference
is that we can assign to such constants, and that is feasible as long as the value
assigned is the value it already has. That cannot be checked automatically by
a compiler, so conventional languages allow const declarations in code only by
prohibiting assignments to them altogether.

Answer 6.6 (p.61) Yes. Use of the law assignment 1.3 requires true An € N =
(—1)> = 1. The assignment is infeasible, however, and in Section 6.6 that was
called ill-typed.

Answer 6.7 (p.61)

Infeasible: z might be negative.

Feasible: N C Z.

Feasible.

Infeasible: even if positive, an integer need not have an integral square root.
Feasible: If ¢ is a complex root of unity, then ¢ and 1/¢ are conjugates.

Ok W=

Answer 6.10 (p.62) Unfold the iteration twice, as shown on p.42. The first
execution of the body establishes F < e; the second requires £ = e, and so can
abort (which it shouldn’t).

Chapter 7

Answer 7.2 (p.66) See Figure 19.1.

Answer 7.4 (p.66) The formula p < ¢ is implied by the previous precondition.
The ‘increasing variant’ was originally (¢ — r) < (g — 79); contracting the frame
gave (¢ — r) < (q — rp); then strengthening the postcondition gave ry < .

Chapter 8

Answer 8.2 (p.72) It is unnecessary because if z is not in the frame, its initial
and final values are equal. Here is the proof of equality:

w: [pre , post]
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= “expand frame 8.3”

w, z: [pre , post A x = 1)
= w,xz: [pre , post|zo\z] A = ]
= “expand frame 8.3”

w: [pre , post[zo\z]] .

Answer 8.4 (p.73) Note first that pre[w\wy] = (Fw - pre), from Predicate law
A.87. Then we have

w: [pre , post]
“strengthen postcondition 5.1”

1M

w: [pre , (Jw - pre) = post|
“strengthen postcondition 1.17

M

w: [pre , (Jw - pre) A post]
“strengthen postcondition 5.1”

M

w: [pre , post| .

Answer 8.5 (p.73) The result is this law:

Law B.2 sequential composition

w,z: [pre , post|
C z: [pre , mid];
w,z: [mid , post].
The formula mid must not contain initial variables; and post must not

contain .
(Il

Law B.2 allows initial variables wy in post, since the first command z: [pre , mid]
in the composition does not change them. In contrast, sequential composition 3.3
allows no initial variables at all.

Answer 8.7 (p.73)

w: [true , false]
C “contract frame 5.4”

: [true , false] = magic
C “expand frame 8.3”

w: [true , false A w = wy]
C w: [true , false].
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Chapter 9

Answer 9.2 (p.91)

. {n:N-.n?}

{i,5,k : N-2i374k}

Nt — {7 Nt i x5}, where N** = {L:N |k > 2}
Ae:Clem=1}

B~ w N o=

Answer 9.3 (p.91) Using the alternative definition, the promoted relation is
transitive if the original relation is. But this law, for example, no longer holds:

s1082As1"Cs1As2Cs2 = s1'es2.
We retain the original definition, therefore.

Answer 9.6 (p.91)

{| true -z} = {z}
{| false-z} = {}

(i:0—n-z) = (z,z,---,1).
[ ———

n times

Answer 9.7 (p.91) The definition is [T¢ = (X : ¢). The empty product []() is
1, because 1 is the identity of multiplication.

Answer 9.10 (p.91) It gives the size of the set. The same applies to bags and
sequences.

Answer 9.16 (p.92) The placement of the well-definedness assumption allows
abortion explicitly in any case in which as[i] is ‘undefined’, and there are two
cases: when the iteration is encountered for the first time; and when the guard is
re-evaluated after an execution of the iteration body.

For the refinement, we have

i: [a € as , a = asli]]
C “l = acasli”

i: la € as, I]; )

i [T, IAa= as[il] (i)
(i) T “w: [pre , post] T w: [pre, post]; {post}”

1:=0;

{I'} q

“weaken precondition 1.27
{i < N}

1M
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(ii) C do a # as[i] —

i laF#as[i], I, i <i<N]| Q
od
C “as above”
irla#asli], I, i <i<N] (iii)
{1}

C {i <N}
(i) Ci:=i+1.

Although some of the above manipulations of assumptions do not follow eas-
ily from the laws we have so far, they should be intuitively plausible: since
w: [pre , post] establishes post, one can sequentially compose on the right with
{post}, which behaves like skip in those circumstances. A ‘nice’ formal derivation
of that step would be

i: [a € as , a € asli]

C {a€asl0}i:=0

C “advance assumption 22.2 backwards”
1:=0;
{a € asl]i},

using a law postponed until Chapter 22 (though not a very complicated one).

Evaluation of as[i] when ¢ = N is ‘now’ acceptable because the assumptions {i <
N} abort in that case anyway, and so it matters not at all what the implementation
might do with as[N].

The general rule relation between invariants and possibly ‘undefined’ iteration
guards is that the invariant should imply the well-definedness condition of the
guard. Requiring those conditions explicitly as assumptions in the code has the
effect of forcing the developer to use just such an invariant.

Answer 9.17 (p.93) The specification terminates unconditionally, but the pro-
gram aborts at the first assumption when (for example) N = 0. The refinement
by that fact alone is invalid. (Look for simple counter examples.)

Operationally, the code of Exercise 9.15 under the conditions of Exercise 9.16
is inappropriate because evaluation of the iteration guard could fail (and cause
abortion) when 7 = N. See Exercise 13.3 for one of the well-known ways around
that problem.

Chapter 10
Answer 10.1 (p.100) The main step is leading assignment 8.5, after writing true as
(k = 0)[k\0]. But the refinement is operationally obvious anyway: after assigning

0 to k, the precondition £ = 0 may be assumed.
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Answer 10.2 (p.100)

1. If Ptl £ PJ[l], then Pl cannot be empty; hence [ cannot be 0. Thus the
greatest element P[l & 1] of P1I (which is sorted) must exceed P[l].
The converse is immediate.

2. For any sequence ¢ such that up ¢, we have z < ¢ iff z < ¢[0]. Apply that
to Pll, noting that up P\{{ &1} implies up P}!.

3. From the other conjuncts, we have P[l] < P[le1] < Pl(l +1).

Answer 10.4 (p.100) The guard —J is Pl £ P[l], and that was simplified in
Answer 10.2 to [ # 0A P[l©1] > P[l]. We can perform that simplification here as
well, because the invariant was in the precondition at the point the iteration was
developed.

Answer 10.5 (p.100) It is Ll[as\as[l:=t]|; that is, it is as before if we imagine
as with its [" element replaced by t.

Since the changed program does not maintain the local invariant, it must be
removed first.

Answer 10.6 (p.101) If the sequence contains repeated elements initially, no
amount of sorting is going to make them go away: a strictly ascending sequence
cannot result, no matter what code we use.

The step in error is the refinement of (iv) to a swap. Conjuncts J and K will
have been modified to be strict —

J
K

Pl < P[]
P[] < PH(I+1)

b 1P

— and the K part of the invariant is not maintained by the swap. (Check it!)

Answer 10.10 (p.101) There’s no good reason why not. But one should avoid
the impression that a strategy must be officially a ‘law’ in order to be valid, or
useful.

Answer 10.11 (p.101) The meaning of the program is unaffected by the difference
between k£ — 1 and k£ © 1, since the assignment is executed only when £ > 0, and
there the two alternatives are equal. The only disadvantage in using £ — 1 is that
if variable k is typed as a natural number (instead of, say, as an integer), and
automatic type checking is performed (the kind that can’t ‘notice’ that £ > 0 in
the iteration body), then the statement will be rejected as ill-typed: a conservative,
but at least a safe, judgement.

The disadvantage of using k &1 is that it would have distracted attention from
the main issue, down iteration itself.
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Chapter 11

Answer 11.1 (p.115)

1. (a:=f+1)[value f\q]

=a:=a+1.
4. (f :=f + 1)[value result f\q]
= |[ var [
[:=a;
l:=1+1;
a:=1

I

=a:=a+1.

Answer 11.2 (p.115)

1. n:=(n+1)!
= |[ var a,f-
a:=f;
fi=al
n:=f

C (f:=ua!)[value q; result f\n+1,n] .
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2. a:>a

= |[ var [
[:=a;
a:> 1

C a: [a > b][value b\a] .

3. [z #0, z=1/
C z: [(p #0)[p\z] ., (& =1/po)[po\z0]]
C [[ varp,g-
p:=1;
¢lp#0, ¢xp=1];
r:=q

I

C q:[p#0, ¢ xp=1]|[value p; result ¢\z,z] .

Answer 11.3 (p.115)

2 [0<z, 7% = x|
C |[ var a,b:R-
a,b,z: [0 <z, 22 = x)
]

C “following assignment 3.5”
|[ var a,b: R
a,b,z: [0 <z, b?=m);
r:=b

J

C “leading assignment 8.5; contract frame 5.4”

|[ var a,b:R-

a:=1;
b: [0<a, b= aq;
r:=0b

J

C Sqrts (z,x) .

Answer 11.4 (p.115) Variable a has been captured. Here is the correct use of
the Copy Rule:

|[ procedure One = a:=1-|[ var a - One || ]|
C |[ procedure One = a:=1-|[ var b- One || ]|
C|[varb-a:=1]
Ca:=1.
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Answer 11.6 (p.116) Using a local invariant makes this easier; otherwise, just
carry the bag-condition through. We have

p<qg<r
Lp,q, 7] = [po, @, 0]
con B; and B = |p,q,r]-

p,q,r:[p<q<r]

“sequential composition 3.3”

P, g, [p < ql; (i)
p,g,rip<q,p<rAqg<r]; (ii)
p,g,rip<rAg<r,p<qg<r] (iii)
p,q:=pliqg,plyq

qQ,r:=qMr,qUr

p,q:=pllg,plq.

b,q,r:

1M

M

(i)
(i)
(iii)

The three commands are just an unfolded insertion sort; the invariant is maintained
trivially.

MrT e

Answer 11.7 (p.116) It is given in Section 6.2.3.

Answer 11.8 (p.116) The proof is straightforward.

The law as given is useful when developing a procedure for the first time: it
generates the specification of the procedure body, which then may be further de-
veloped. The alternative suggested in this exercise is useful when one seeks to use
an existing procedure whose specification is known already:.

Chapter 12

Answer 12.2 (p.122)

—hik
= (3j:l=k-k~jAaslk] > as[j]) .

From J, however, we have ph(l—h — {k}), so the j whose existence is asserted
above must be either 2k + 1 or 2k 4 2. Thus we continue

_ 2k +1 < h A as[k] > as[2k + 1]
- V. 2k +2 < hAas[k] > as[2k + 2] .

Answer 12.4 (p.122) We assume that all variables range over strictly positive
values. From the definition of limy_,,, we have

Ve-@M-(YN-N>M=§N/gN <c))).
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By Predicate law A.68 we conclude that
(Fe,M-(VWN-N>M=fN<cx8N)),
which is just f < g. It remains to show that f »* g, and we proceed
- (Je,M-(VN-N>M=8N <c¢cxfN))
“Predicate laws A.61, A.62”
Ve,M+-(AN-N>MAfN <1/cxgN))
& “take d =1/2¢”
(Vd,M-(AN-N>MAfN <dxgN))
& “Lemma B.1 below”
Vd-@3M-(VN-N>M=fN<dxgN)))
the formula above.

In fact, Lemma B.1 is the interesting part of this exercise:

Lemma B.1 If A does not contain free M, then
(AM-WVN-N>M=A)=NVM-(IN-N>MANA)).

Proof:

(FM-(VN-N>M=A)

“L fresh; Predicate law A.74”

VL-3M-(VYN-N>M= A)))

= “Predicate law A.86”

VL-3M-LUM > M = A[N\LU M)))

“LUM > M is identically true”

(VL. (3IM - A[N\LU M)))

“LU M > L is identically true”

(VL-(3M-LUM >LANA[N\LL M)))

= “Predicate law A.87”

(VL-(3M,N-N>LAA))

“Predicate laws A.75, A.84; L, M not free in A”

VM-3IN-N>MAA)) .

O

Answer 12.8 (p.123) They do not obey the usual rules for equality: we can have
f = O(h) and g = O(h), but f = g does not follow. The intended meaning is
f € O(h), where O(h) = {f |f < h}.

Answer 12.10 (p.123) Time complexity N is ‘faster than’ 2N, though both are
linear. Similarly, Quick Sort is faster than Heap Sort by some constant factor, on
average. Incidentally, Quick Sort has worst-case complexity N2, but in the worst
case Heap Sort is still N log N.
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Chapter 13

Answer 13.1 (p.130) No. That es is finite is used when defining the variant to
be #es, since that must be an integer.

(For those with some knowledge of set theory: The variant can be any ordinal-
valued function, even infinite. But in developing iteration or recursion we depend
on a strict decrease of the variant:

#(es — {e}) < #es.
That is not true when #es is infinite; instead, the two expressions are equal.)
Answer 13.2 (p.130)

procedure Fact'(value m,k:N) = f:=m!xk
C variant M is m-
ifm=0—>f:=k

] m>0—=>{0<m=M}f:=m!xk q
fi
C/f0<mel<M, f=(mel) xmxk|
C Fact' (mel,m x k).
Chapter 14

Answer 14.1 (p.135) See Figure B.1.

Answer 14.2 (p.135) The defining properties of the Gray code treat cases n = 0,
n =1, and n > 2; the code should do the same.

Answer 14.6 (p.135)

a,w: [w = rv )
C rewrite;

a,w: [w = wy H rvag] q
C re R variant N is #« -
a,w: [#Fa =N, w=wyH rvag
if eof — skip
| —eof —

a,w: [a# ) AN#a =N, w=uwyH rvao q

1M

fi
var ¢ : F-

a,w, e [#tla < N, w=uwy+H rvtlag + (hd ap)]

1M
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n gen binary
0 0 0
1 1 1
2 11 10
3 10 11
4 110 100
5 111 101
6 101 110
7 100 111
8/ 110011000
911011001
11111010
1111101011
12110101100
B3/1011]1101
14110011110
5110001111

Figure B.1 Gray codes

C input e;
a,w: [#a < N, w=uwyH rvay+ (e)]
C a,w: [#a <N, wH(e) =wyHrvayH(e)];
output e
R .

M

Chapter 15

Answer 15.2 (p.150)

1. Buf = empty | fullN
2. Tree = tipR | node Tree Tree
3. violet | indigo | blue | green | yellow | orange | red

Answer 15.3 (p.150)

if nn isokn — nn:=ok(n +1) fi
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‘increments’ n is if is not undefined, and aborts otherwise.
Answer 15.4 (p.150) The specification is d: [k in db = fullk d € db].

Answer 15.6 (p.150) The specification is

if ~(k indb) — d:=undefined
[ kindd  — d: [fullk d € db]
fi

Why is the overall specification feasible even though the body of the second branch,
on its own, is not?

Answer 15.9 (p.151) The reasoning would continue

= “Predicate law A.56”
paradoz € set TooBig A several paradox ¢ paradox |

establishing a contradiction, since the first conjunct follows from the definition
of paradox. Our only remaining assumption is that the definition of TooBig was
meaningful, which we must now abandon.

Answer 15.14 (p.152) It is a strict partial order, and C is a non-strict partial
order. Whether it is well founded depends on the set over which it is defined: over
set N it is not well founded; but over finset N it is.

Answer 15.16 (p.152)

r,s:=rvs,?

C con R-
r,s:[R=rs, r=R]
C ori=();
r,s:[R=wsHr, R=rwws+HrAs=)] q

C dosishit—r,s:=hr,tod.

Answer 15.18 (p.153) This development requires two stacks of trees, say ntll
and nt[2, with invariant ‘the frontiers are equal so far’:

(EIF  seq X - F1=F + (4nt : ntll - frontier nt) ) |

F2 = F + (+nt : ntl2 - frontier nt)

where F'1 and F2 are logical constants equal to the frontiers of ntl and nt2 re-
spectively.

The iteration has four alternatives, corresponding to the four possibilities for the
tops of the two stacks when considered together; it should terminate when either
or both of the stacks is empty.
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This algorithm is a good example of one in which for space efficiency (two)
explicit stacks are needed, rather than recursion. (Other options are coroutines, or
a lazy functional language.)

Answer 15.19 (p.153) We give an argument for each of the two cases. First we
have

sizelt ntl

= “alternation guard”
sizelt(empty: ntl’

= “definition sizelt”
sizet empty + sizelt ntl’

= “definition sizet”
1 4+ sizelt ntl’
> sizelt ntl’ .

For the second we have

sizelt ntl
= “alternation guard”

sizelt(node n' ntl nt2:ntl’
= “definition sizelt”

sizet(node n’ ntl nt2) + sizelt ntl’
= “definition sizet”

1 + sizet nt1 + sizet nt2 + sizelt ntl’
= “definition sizet”

1 + sizelt(ntl:nt2:ntl")
> sizelt(ntl:nt2:ntl') .

Chapter 16

Answer 16.2 (p.161) Change Acquire to read
tbu [uEN, t€ug N2t Au=u U{t}] .

That refines the original specification, hence the new procedure refines the old,
hence the new module refines the old.

But it is not feasible, because it is forced to return an even number even when u
might contain only odd numbers. See Chapter 17 for a way to get around that —
surely, beginning with an infinite supply of integers both even and odd, one should
never run out!
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module Random;
var n : N;

procedure Acquire (result ¢ : N)
= n:=(A x n) mod B;
t:=mn;

procedure Return (value ¢ : N)
= skip;

initially n = S
end

The constants A, B, S : N determine the precise values returned.

Figure B.2 Random number module

Answer 16.4 (p.162) See Figure B.2; it does not refine Tag, because pseudo-
random sequences eventually repeat.

Answer 16.5 (p.162) In Figure 16.7, yes: Part 3 of refine module 16.2 allows it.
But in Figure 16.8, that change would affect the exported procedure P1 in a way
not allowed by refine module 16.2. Hence in Figure 16.8, no.

Answer 16.6 (p.162) Originally Out assigned 0 to n, given the specific actual
procedure In supplied; after the change, it assigned 1 to n instead. The new
module does refine the old module, but the new behaviour does not refine the old
behaviour.

The explanation is that the n : =0 behaviour, though guaranteed given the actual
procedure In, represented a resolution of nondeterminism in the implementation
which cannot be depended on by clients. Indeed the behaviour could be changed at
any time by a junior programmer who knows no more than to link imported proce-
dures to actual procedures that refine them, and that he need not ask permission
to do so.

Chapter 17

Answer 17.4 (p.179) For the first, we have by diminish specification 17.11,

z: [(Vap-(Fa-z=a))]
C oz [(Vay -z = a) . (i)
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For the second, we have

z: [(Vay-(Fa-z=a))
z: [true]

C
C choose z .

The first results in the infeasible (i): we cannot have z equal to all values of a,!
But a is not auxiliary in the given specification anyway, since the final value of z
depends on the initial value of a. So we should expect infeasibility.

The second refines to code.

Answer 17.5 (p.179) The invariant is N =1+ m x n.
The augmented program is

I,m,n,I',m:=0,1,N,0, M,

don#0—
ifevenn — m,n,m:=2xm,n=+2,2xm’
| oddn — lL,n,l":=1l+m,n—1,I"+m'
fi

od .

Since the original program established [ = N, the augmented program will establish
I'=M x N (as well).

To determine which variables are auziliary, as far as the calculation of [’ is con-
cerned, we do the opposite: collect the essential variables. Variable n is essential,
because it occurs in guards, and it is given that [’ is essential. From the assignment
I':=1'"+m' we find that we need m' as well, but the process stops there: thus [
and m are auxiliary. After removing them, then renaming (of I’ to [ and m' to m),
we get

n,l,m:=N,0,M;

don#0—
ifevenn - n,m:=n-+2,2xm
[ oddn —n,l:=n—1,14+m
fi

od .

Answer 17.8 (p.180) If the constant A were a matrix, division by A — 1 would
no longer be a simple matter.
Answer 17.9 (p.181) We have by diminish specification 17.12

z: [(Fa-pre) , (Va-prey = post)]
C “Predicate laws A.74, A.75”
z: [pre , prey = post|
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C “strengthen postcondition 5.1”
w: [pre , post| .

Thus such specifications are unaffected.

Answer 17.10 (p.181) Here are the two laws:

Law B.3 augment assumption The assumption {pre} becomes {pre A
CI}.
Proof:

{pre}

= : [pre , true] .

Then by augment specification 17.6 that becomes
c: [pre AN CI, CI]

C :[preACI, CI]

C “strengthen postcondition 5.1”
: [pre A CI | true]

= {pre A CI} .

O

Law B.4 diminish assumption The assumption {pre} is diminished to
{3a:A-pre)}.
Proof:

= : [pre , true]

Then by diminish specification 17.12 that becomes
c:[(Ja:A-pre) , (Ya-preg = true)]
C:[(Ja:A-pre) , truel
= {(Ja:A-pre)}.

Answer 17.11 (p.181) Here are the two laws:

Law B.5 augment coercion The coercion [post] becomes [CI = post].
Proof:

[post]
= : [post]
becomes “augment specification 17.6”
: [CI, CI A post]
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C : [CI = post]

= [CI = post] .
O

Law B.6 diminish coercion The coercion [post] becomes[(V a : A - post)].
Proof:

C [post]
= : [post]
becomes “diminish specification 17.12”
c:[(Ja:A-true) , (Va-true = post)]
C c:[(Va:A-post)]
= [(Va:A-post)] .

Answer 17.13 (p.181) The law augment guard 17.9 gives the new guards n # 0
and n = 0 directly; the law alternation guards 4.3 is then unnecessary! The other
data refinements are as before.

Answer 17.14 (p.181) The effect of the augmentation is to add u € finset N as
an invariant of every command: in particular,

tyu: [u AN, t & ug Au=uyU{t}]
becomes t,u: [u # N, u € finset N | t & ug A u = uy U {t}] .
C “uU{t} is finite if u is”
tyu: [u € finset N, ¢ € ug Au=ugU{t}] .

The effect on Exercise 16.2 is to allow us to include u € finset N in the precon-
dition before we strengthen the postcondition with 2 | ¢. Feasibility is maintained.

Answer 17.15 (p.181) After adding v we have Figure B.3; removing u gives
Figure B.4. See also Exercise 17.16.

Answer 17.18 (p.182) The data-type invariant (such as imposed by and) of the
module is strengthened; the augmentation laws simply ensure that it is maintained.

Answer 17.20 (p.182) The concrete iteration do aq[n] # ¢ — n:=n+1 od
would fail to terminate if a were not in aq. It is reasonable, since the abstract
command could abort in that case.

Answer 17.22 (p.182) There is no hard-and-fast answer to questions like that:
it depends on what your ‘compiler’ (or reader) will accept. In this case, one might
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module Tag
var u, v : set N;

procedure Acquire (result ¢ : N)
= u,t,v: [u#EN, uCovAvefinsetN | ¢t € uygAu=uyU{t};

procedure Return (value ¢ : N)

~

= w,v:=u— {t},v;

initially v = {} Au C v Av € finset N
end

Figure B.3 Augmented module (Exercise 17.15)

module Tag
var v : set N;

procedure Acquire (result ¢ : N)
= toi[v#EN, t€uANv=1yU/{t};

procedure Return (value ¢ : N)
= v:i=uv;

initially v = {}
end

Figure B.4 Diminished module (Exercise 17.15)

be thinking of a further data refinement to a fixed-length sequence and an integer
‘end-of-sequence’ pointer. The data refinement of fr then is trivial.

Answer 17.24 (p.182) The refinements are

1. a:=aqla] ;
2. a,n:=asn—1],n—1 ;and
3. {n < N} aq[n]l,n:=a,n+1 .

Answer 17.25 (p.182) Binary search is a suitable finishing off of the derivation.
(See Exercise 10.7).
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Answer 17.26 (p.182)

w: [pre , post]
C “expand frame 8.3”
w, a: [pre , post A\ a = ap
becomes “data-refine specification 17.15”
w, c: [prela\ af ¢] , dtic, post[ay, a\ af co,af ¢] A af ¢ = af ¢
C “contract frame 5.4”

w: [pre[a\ af ¢] , dtic, post[ag, a\ af ¢y, af c]] .

The effect is exactly as before, so that data-refine specification 17.15 can be used
even when a does not occur in the abstract frame. Note however that the ¢y in
the postcondition can be replaced by ¢, since ¢ is not in the concrete frame.

Of more interest however is the use of contract frame 5.4, where a proper re-
finement occurs. The conjunct af ¢ = af ¢y, effectively strengthened to ¢ = ¢y by
contract frame 5.4, allows considerable freedom in adjusting the concrete represen-
tation. (See Exercise 17.27).

Answer 17.27 (p.182) Implementing a € as, where the concrete representation
is an unordered sequence aq, might result in bringing a to the front of the sequence
aq so that it would be found more quickly on a subsequent search.

Answer 17.28 (p.183) Assuming a declaration adb : K + D, the specification
would be

if k£ € dom adb — d : = undefined
| k€ domadb — d:=okadb k
fi.

The coupling invariant is adb = {k : K; d : d | fullk d € db}. Note that it is func-
tional.

Answer 17.29 (p.183) If the array were fixed-size, then there would be an upper
limit on the number of trees it could contain; with the given algorithm the size
needed would depend on the depth of the original tree. Thus the specification
would indeed need modification, including a precondition limiting the depth of the
tree nt.

That taken care of, the data-refinement is simple. The abstract variable is ntl,
and the concrete say would be nta : seqy Tree; h : N with coupling invariant
ntl = ntath A h < N. The resulting code is shown in Figure B.5.

That leaves the records and pointers. Since the original tree nt is not modified,
one could represent it and its subtrees by pointers to their root nodes: the array
nta would then become a fixed-length sequence of pointers to records.

Answer 17.35 (p.183) These are the refinement steps:
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|[ var nta : seqy Tree; h : N-
ntal0], h:=(nt), 1;
doh #0—
if nta[h — 1] is
empty - h:=h—1
| (noden'ntl nt2) —
n, ntalh — 1], nta[h], h:=n + n', ntl, nt2,h + 1
fi

od

Figure B.5 Iterative tree-summing with fixed-size array

r:=1

“simple specification 8.17

z: [z =1]

z:[(z=1Vze=—-1)ANz>0]

“absorb coercion 17.2 (backwards)”

oz =1Vz=—-1]; Q
[z > 0] (1)

“alternation 4.1, assignment 1.3”

M

IRRIN

M

if true > z:=1
| true = z:=-1
fi.

The coercion (i) would test for z > 0, and force backtracking to the earlier non-
deterministic choice if the test failed. ‘Eventually’ the correct branch z : =1 would
be taken, and the coercion would then behave like skip.

Chapter 18

Answer 18.1 (p.196) If —em asti, then for all z we have
(asTi).x < i/2.

Hence for all z not equal to as|i], we have
(ast(i+ 1)z < (i+1)/2.

Thus the only possible majority in ast(i + 1) is as[i] itself.
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Answer 18.4 (p.196) We have these equalities:

[ var z - prog ||
= |[ var z; procedure P = prog-
P
I

= |[ module M
var r;
procedure P = prog
end-

P
I

The transformation is carried out on the interior of module M, and the above
process reversed.

Answer 18.5 (p.196) For p.187, we need two steps. First, the invariant ¢ = asti.z
is conjoined to the guards. Then we must show that

L. (—memasti A ¢ = asti.z)
Vo (smz asti A c = asti.z)

= true

2. ((memasti A ¢ = asti.x)
Vo (smz asti A c = asti.z))
AN c<i/2

= —emastiAc=asti.xz

3. ((memasti A ¢ = asti.z)
Vo (smz asti A c = asti.z))
AN e>i/2

= smz asTi A c=asTi.z .

For p.189, the procedure is similar.

Chapter 20

Answer 20.1 (p.207) The refinement is valid because, in seeking to minimise
overall waste wt, we cannot do better than to minimise wt for what remains.

That is not a property of all waste functions, but it is of wt. Is it a property of
this one?

wtlpss = (+ils:frpss- M = ls)
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What kind of paragraph results from minimising wt1?
The refinement of (ii) is proved by strengthen postcondition, then (trivially)
weaken precondition. What we must show is of the form

(Vgss+ A=B) = (Vgss-A=0),

and that follows from just B = C by propositional reasoning and distribution of
= through V ¢ss. The precondition of (ii) contains I, which by instantiating gss
to (ws[i—j]) # gss (Predicate law A.86) gives

ep(wsi) ((wsli—=7]) 4 gss)
= epws (pss H (ws[i—j]) H g¢ss) .

That is exactly what is required.
Answer 20.3 (p.207) It is removed when the shortest next line is taken.

Answer 20.4 (p.207) Procedure GetWord is used to fill the sequence ws, in each
case assigning w41 to account for a following blank. The line width M is increased
by 1 to allow for the blank following the last word on a line.

In the code of the second half, pss is removed. The command j, s:=j+1, s+ws[j]
is followed by PutWord and pss: = pss + (ws[i—j]) is replaced by PutLine.

Chapter 21

Answer 21.1 (p.216) The time is linear in the size of hs.

For a given call of Hist, let I be the value it receives through its formal parameter
i, and let J be the value it returns through its formal parameter J. Note first that
I < J: the procedure is guaranteed to return J greater than the I it received.

Then consider the number of further calls made by Hist (to itself): it is no more
than J — I — 1, and so any call to Hist accounts for at most J — I calls in all
(including the initial one).

Since for the initial call we have I = —1, and the J returned cannot exceed N,
we have limited the total number of calls to N + 1.

Answer 21.2 (p.216) Consider successively longer ‘row prefixes’ of the rectangle,
maintaining the invariant that the largest true rectangle of the prefix is known.
Re-establishing the invariant for one further row is done by finding the largest
rectangle under the histogram formed by ‘true columns’ above the new row.

The heights of columns in the histogram above successive rows can form part
of the invariant also, leading to overall time complexity linear in the area of the
array.

Answer 21.3 (p.216) This problem is much easier than Exercise 21.2, though
the complexity is still linear in the area of the array. One considers ‘lower-right
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corners’ of possible squares element-by-element along rows. Knowing the height of
a ‘true column’ above the current element, the length of the ‘true suffix’ of the part
of the current row ending in that element, and finally the size of the largest true
square for the element immediately left and above it, is sufficient to re-establish
the invariant that the largest true square is known for all elements considered so
far.

The difference between squares and rectangles is that if one square has less area
than another, then it can be nested within the other. The same is not true of
rectangles.

Chapter 22

Answer 22.1 (p.244) Following the convention that all procedures have the iden-
tity of their user as the first parameter, the definition would be

procedure Cancel (value me : Usr; id : Id)
= sent:=sent & {id} .

‘Unauthorised’ removal is possible by any user knowing the id of the message,
and in practice that would be someone who has already received it. (The sender
knows the id, but is ‘authorised’.)

Including me always as a first parameter allows subsequent design changes with-
out altering the interface — in this case, we might change the specification to
record messages’ senders, and alter Clancel to take that into account. Would it be
a refinement?

Answer 22.3 (p.244) The unfortunate programmer saw in the specification of
Send that the new identifier was first chosen outside the set dom msgs, and then
immediately added to it by msgs[id] : = msg. Noticing that msgs was not assigned
to elsewhere in the module, he reasoned correctly that Procedure Send never re-
turned the same id twice. Rather than write a generator of unique identifiers
himself, therefore, he simply used the one he had found.

The change represented by Figure 22.2 invalidated his second observation, for
msgs is assigned to by the replacement Read, and in fact made smaller.

Answer 22.8 (p.246) Remove msgs, sent and recd as abstract variables, and
introduce the concrete variable used; the coupling invariant is

ran sent C used’ .

Yes, it is a problem. If we do not address time explicitly, then we do not have
the vocabulary with which to express ‘prompt’ delivery. And one extreme of not
being prompt is not to deliver at all.
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Beyond any mathematical specification are ‘extra-mathematical’ requirements
that must be specified some other way. If informal requirements are not good
enough in any particular case, then more sophisticated mathematical techniques
must be used; where the mathematics stops, and informality begins, is a matter
for taste and good judgement.
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Summary of laws

The laws, definitions, and abbreviations appear below in alphabetical order.

Law 1.8 absorb assumption p.12
An assumption before a specification can be absorbed directly into its precondition.

{pre'} w: [pre , post] = w: [pre’ A pre, post] .

(Il

Law 17.2 absorb coercion p.165

A coercion following a specification can be absorbed into its postcondition.
w: [pre , post]; [post']| = w: [pre, post A post'] .

(I

Law 22.2 advance assumption p.222
w:=FE {pre} = {pre[w\E|} w:=E .

(Il

Law 22.1 advance coercion p.222
w:=FE [post] = [postiw\E]] w:=FE .

(I

Law 4.1 alternation p.37

If pre = GG, then

w: [pre , post]
Cif (] i+ Gy — w: [G; A pre , post]) fi .

298
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Law 4.2 alternation p.39

{(Vi-Gi)} prog
=if (Ji-G; — {G;} prog) fi .

O

Law 4.3 alternation guards p.40
Let GG mean Gy V ---V G,, and HH similarly. Then provided

1. GG = HH, and
2. GG = (H; = G;) for each i separately,

this refinement is valid:
if (Ji-Gi— progs)) i T if ([ i H; — prog) fi.

O

Law 5.2 assignment D-44
If (w=wy) A (z = 19) A\ pre = post[w\FE], then

w,z: [pre , post] C w:=FE.

O
Definition 23.1 assignment p.250
For any postcondition A,

wp(w:=E,A) = Alw\E].

O

Law 1.3 assignment p.8
If pre = post|w\E], then

w,z: [pre , post] C w:=FE.

ibbreviation 1.6 assumption p.11
{pre} =:[pre, true] .

O

Definition 23.7 assumption p.254
wp({pre}, A) = pre N A .

a
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Law 17.7 augment assignment p.167
The assignment w : = F can be replaced by the fragment

{CI} wyc:=E,? [CI].

(Il
Law 17.8 augment assignment p.167

The assignment w:= FE can be replaced by the assignment w, ¢: = FE, F' provided
that

CI = Cllw,c\E,F].

O
Law B.3 augment assumption p.289
The assumption {pre} becomes {pre A CI}. O

Law B.5 augment coercion p.289
The coercion [post] becomes [CI = post].

(Il

Law 17.9 augment guard p.168
The guard G may be replaced by G’ provided that

cr = (Ged).

(I

Law 17.5 augment initialisation p.166
The initialisation I becomes I A\ CI.

(I

Law 17.6 augment specification p.167

The specification w: [pre , post] becomes

w, c: [pre , CI , post] .

O
Abbreviation 17.1 coercion p.165
no initial variables,
[post] = : [true , post] .
(Il
Definition 23.8 coercion p.254

no initial variables,

wp([post], A) = post = A .
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Law 18.7 collapse identical branches p.194

f (] i-G;— branch;)

o

| G — branch
1 G — branch
fi
= if ([ i - G; — branch;)
1 GV G"— branch
fi.
O
Law 5.4 contract frame p.45
w,z: [pre , post] T w: [pre, post[z\z]] .
|
Definition 23.13 data refinement p.256

Let a be a list of variables called abstract, let ¢ be a list of variables called concrete,
and let I be a formula called the coupling invariant. Then command progA is data-
refined to progC by a, ¢, I exactly when for all postconditions A not containing ¢
we have

(Fa-IAwp(progA, A)) = wp(progC,(Fa-IANA)).

O

Law 17.16 data-refine assignment p. 177
Under abstraction function af and data-type invariant dti, the assignment
w, a:=FE, F can be replaced by the assignment w, ¢: = E|a\ af ¢], G provided that
G contains no a, and that

dtic = Fla\af c] =af G
and dtic=>dtiG .

(I

Law 17.17 data-refine guard p.178
Under abstraction function af and data-type invariant dti, the guard G' may be
replaced by G[a\ af ¢] A dtic, or if desired simply by Gla\ af ¢] on its own.

(Il

Law 17.14 data-refine initialisation p.175
Under abstraction function af and data-type invariant dti, the initialisation I be-
comes

Ia\ af c] Adtic .

© Carroll Morgan 1990, 1994, 1998



302  Summary of laws

Law 17.15 data-refine specification p.176
Under abstraction function af and data-type invariant dti, the specification
w, a: [pre , post] becomes

w, c: [pre[a\af ¢] , dtic, post[a, a\ af ¢y, af c]] .

(Il

Abbreviation 1.5 default precondition p.11
w: [post] = w: [true , post] .

a

Law 17.13 diminish assignment p.170

If F contains no variables a, then the assignment w, a: = FE, F' can be replaced by
the assignment w:=F.

(I

Law B.4 diminish assumption p.289
The assumption {pre} is diminished to {(Fa: A - pre)}.

(Il

Law B.6 diminish coercion p.290
The coercion [post] becomes [(V a : A - post)].

(Il

Law 17.10 diminish initialisation p.168
The initialisation I becomes

(Fa:A-1).

O
Law 17.11 diminish specification p.169
The specification w, a: [pre , post] becomes

w: [(Fa:A-pre) , Vag: A-preg= (Ja: A-post))] ,

where prey is pre[w, a\wy, ap]. The frame beforehand must include a.
O

Law 17.12 diminish specification p.169
The specification w: [pre , post] becomes

w: [(Fa:A-pre) , (Va:A-preg = post)] ,

where prey is pre[w\wp]. The frame beforehand need not include a, and post must
not contain ay.
a

© Carroll Morgan 1990, 1994, 1998



Summary of laws 303

Law 17.4 establish assumption p.166
An assumption after a specification can be removed after suitable strengthening of
the precondition.

w: [pre , post]; {pre'}
= w: [pre A (Y w - post = pre’) [wp\w] , post] .

(I

Law 8.3 expand frame p.69
w: [pre , post] = w,z: [pre, post Nz = x| .

O

Law 8.6 expand frame p.72

For fresh constant X,

w: [pre , post]
C con X-

w,z: [pre Ao =X, post Nz = X].
(Il

Definition 23.6 feasibility p.254
Command prog is feasible exactly when

wp(prog, false) = false .

Otherwise it is infeasible.
a

Definition 1.4 feasibility p.10
The specification w: [pre , post] is feasible iff

pre. = (Jw: T-post) ,

where T is the type® of the variables w.
a

®In Chapter 6 the notion of type will be generalised to include so-called ‘local invariants’, and
then a more comprehensive definition (6.5) of feasibility will be appropriate. It does not concern
us now, but must be borne in mind if ever referring to the definition above once local invariants
have been introduced.

Definition 6.5 feasibility p.58
The specification w: [pre , post] is feasible in context inv iff

(w=wy) Apre Ninv = (Jw: T -inv A post),

where T is the type of w.
O
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Law 6.3 fiz initial value p.56
For any term E such that pre = F € T, and fresh name c,

w: [pre , post]
Cconc:T-

w: [pre Nc=FE | post].

(I
Law 18.6 flatten nested alternations p.192

if (] ¢+ G, —if (] j- Hj — branchy) fi) fi
= if (I:I Z,] . Gz VAN Hj — bT’(IHChZ’j) fi.

a
Law 3.5 following assignment p.32
For any term FE,

[pre , post]
[pre , post|z\FE]l;
E .

8 8

C

8 g g

Y
Y

(I

Abbreviation 8.2 initial variable p.69
Occurrences of 0-subscripted variables in the postcondition of a specification refer
to values held by those variables in the initial state. Let z be any variable, probably
occurring in the frame w. If X is a fresh name, and 7' is the type of z, then

w: [pre , post]
= |[con X : T-w:[pre Nz =X, post[z)\X]] ]| .

O

Law B.1 initialised iteration p.272
Provided inv contains no initial variables,

w: [pre , inv A =G|
C w: [pre , inv];
do G — w: [GAinv, invA(0<V < V)] od.

(Il

Law 17.19 introduce assumption p.183
[post] T [post] {post}.

(I
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Law 17.3 introduce coercion p.165
skip is refined by any coercion.

skip LC  [post] .

(Il
Law 6.1 introduce local variable p.5d
If  does not occur in w, pre or post then

w: [pre , post] C |[var z: T;and inv - w,z: [pre , post] || .

(Il
Law 6.2 introduce logical constant p.56
If pre = (3¢ : T - pre’), and ¢ does not occur in w, pre or post, then

w: [pre , post]
Cconc:T-

w: [pre’ | post].

If the optional type T is omitted, then the quantification in the proviso should be
untyped.

(I

Law 5.5 iteration p.46
Let inv, the invariant, be any formula; let V', the variant, be any integer-valued
expression. Then if GG is the disjunction of the guards,

w: [inv , inv A ~GG]
C do ([i-Gi — w:linvAG;, inuA(0<V < V)] od.

Neither inv nor G; may contain initial variables. The expression Vj is V]w\wyp].
|

Law 8.5 leading assignment p.71
For any expression F,

z: [pre[z\E| , post[zo\ F]
E;

w7
C z:
w,z: [pre , post] .

The expression Ey abbreviates E[w, z\wp, o).

O

Law 3.6 leading assignment p.35
For disjoint w and «,

w,z:=E,Flw\E] = w:=FE; z:=F .
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Law 18.2 left-distribution of composition over alternation

if (] i - G; — branch;) fi; prog
= if (] ¢ - G; — branch;; prog) fi .

Abbreviation 18.1 local block initialisation

|[ var [ : T'; initially inv - prog ||
= |[var [: T [inv]; prog]| .

|

Definition 23.4 local variable

wp(|[ var z - prog ]|, A) = (Y& - wp(prog, A)),

provided A contains no free z.
O

Definition 23.5 logical constant

wp(|[ con z - prog ]|, A) = (Fz - wp(prog, A)),

provided A contains no free z.
(Il

Law 1.9 merge assumptions

{pre'} {pre} = {pre' Apre} .

O
Law 17.18 merge coercions

[post] [post’] = [post A post'] .

O
Law 3.1 open assignment
For any expression F',

w,z:=F,7 C w,z:=FKE,F.

O
Definition 23.12 recursion

Let C(p) be a program fragment in which the name p appears. Then

re p-C(p) er

is the least-refined program fiz such that C(fix) = fiz.
O
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Law 16.1 refine initialisation p.157
If init’ = init, then

initially init C initially init’ .

(Il

Law 16.2 refine module p.158
Let E be the list of exported procedures from module M, I its imported procedures,
and init its initialisation. A module M’ refines M if the following three conditions
are satisfied:

1. Its exported variables are unchanged.
2. Its exported procedures E' refine E.
3. Its initialisation init’ refines init.

In addition, the following changes may be made provided the three conditions
above are not invalidated as a result:

1. Its imported variables’ declarations are weakened.

2. Its imported procedures I are refined by I.

3. An imported procedure I is replaced by a local (neither imported nor ex-
ported) procedure I’ that refines I.

(Il

Definition 23.3 refinement p.252
For any commands progl and prog2, we say that progl is refined by prog2, writing
progl C prog2, exactly when for all postconditions A we have

wp(progl, A) = wp(prog2, A) .

(Il

Law 18.5 remove alternation p.192
if true — branch i = branch .

(I

Law 1.10 remowve assumption p.15

Any assumption is refined by skip.

{pre} C skip.

O

Law 17.20 remove coercion p.183
{pre} [pre] C {pre}.

O
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Law 18.4 remove false guard p.192

if (] i - G; — branch;)
| false — branch
fi
= if (] i - G; — branch;) fi .

(I
Law 7.1 remowve invariant p.66
Provided w does not occur in inv,

w: [pre , inv , post] T w: [pre , post] .

(Il
Law 6.4 remove logical constant p.57
If ¢ occurs nowhere in program prog, then

|[con c¢: T-prog]| T prog.

a
Law 11.3 result assignment p.110
Given a procedure declaration that refines

procedure Proc (vesult f : T) = w,f:=FE,F ,
with f not occurring in £ or in F', we have the following refinement:
w,a:=E,F T Proc (a).

Variables a and f need not be different from each other, but w must be disjoint
from both.

(I

Law 11.4 result specification p.111
Given a procedure declaration that refines

procedure Proc (result f: T) = w,f: [pre , postla\f]] ,

with f not occurring in pre, and neither f nor fy occurring in post, we have the
following refinement:

w, a: [pre , post] T Proc (a) .

Again, variables ¢ and f need not be different from each other, but w must be
disjoint from both.
a
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Law 18.3 right-distribution of assignment over alternation p.191

r:=FE; if ([ i+ G; — branch;) fi

= if (] i+ Gi[z\E]| = z:=E; branch;) fi .

(Il
Law 18.8 select true guard

if ([ i - G; — branch;)
| true — branch
fi

C branch .

(I
Abbreviation 10.1 sequence assignment
For any sequence as, if 0 < 4,7 < #as then

as[i:=FE|j] = E when i=j
as[j] when i#7j.
O

Law 3.3 sequential composition
For any® formula mid,

p.196

.99

p.31

w: [pre , post] T w:[pre, mid]; w: [mid , post] .

O

®Neither mid nor post, however, may contain the so-called ‘initial variables’ that are the
subject of Chapter 8 to come. That does not at all concern us now, but must be remembered
if ever referring to this law later, once they have been introduced. Law B.2 on page 275 is the

most appropriate replacement for the more general case.

Law 8.4 sequential composition
For fresh constants X,

w, z: [pre , post]
C con X-
z: [pre , mid];
w, z: [mid[2\X] , post[zo\X]]-

p.70

The formula mid must not contain initial variables other than ;.

O
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Law B.2 sequential composition p.275

w, z: [pre , post]
C z: [pre, mid];
w, z: [mid , post].

The formula mid must not contain initial variables; and post must not contain ;.
O

Abbreviation 8.1 simple specification p.68
For any relation ®,

w:OF = w:|wo E,
where Ey is Elw\wp).
(Il
Law 1.7 simple specification p.11

Provided E contains no w,
w:=FE = w:|w=E].

If w and F are lists, then the formula w = F means the equating of corresponding
elements of the lists.

(I

Law 3.2 skip command p.30
If pre = post, then

w: [pre , post] C  skip.

(Il
Law 5.3 skip command P45
If (w = wy) A pre = post, then

w: [pre , post] C  skip .

O
Law 3.4 skip composition p.31
For any program prog,
prog; skip = skip; prog = prog .
(I
Definition 23.2 specification p.251

wp(w: [pre , post], A) = pre N (Y w - post = A)[v\v],
where the substitution [vp\v] replaces all initial variables by corresponding final
variables.

O
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Abbreviation 5.6 specification invariant P46
Provided inv contains no initial variables,

w: [pre , inv , post] = w: [pre Ainv , inv A post] .

O

Law 1.1 strengthen postcondition p.7
If post’ = post, then

w: [pre , post] T w: [pre, post'].

O
Law 5.1 strengthen postcondition D44
If pre[w\wp] A post’ = post, then

w: [pre , post] T  w: [pre, post'] .

O
Definition 23.10 substitution by result p.255

wp(prog[result f\a], A) = (V[ - wp(prog, Ala\f])),

provided f does not occur free in A.
(I

Definition 23.9 substitution by value p.255

wp(prog[value f\E], A) = wp(prog, A)|[f\F],

provided f does not occur free in A.
a

Definition 23.11 substitution by value-result p.255

wp(prog[value result f\a], A) = wp(prog, Ala\f])[f\a],

provided f does not occur free in A.
(Il
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Law 15.1 tagged alternation p.139
Let first, middle and last be tags from a typical type declaration

first A---H |middle ---P |last Q---Z .
Provided none of - - - h, q-- -z appear free in F or prog, this refinement is valid:

{E isfirst V E is last} prog
Cif Fis
firsta---h — {E =firsta---h} prog
| lastqg---z — {E =lastq---z} prog
fi.

(I
Law 15.2 tagged iteration p.145
Let first, middle and last be tags from a type declaration

Type = first A---H |middle [ ---P|last Q---Y .

Provided none of a---h, q---y appears free in z, inv, E, or V, this refinement is
valid:

z: [inv , inv A —(E is first V E is last)]
C do Eis
firsta---h— z: [E =firsta---h, inv, VQ V]
| lastq---y— z: [E=lastq- -y, inv, VQ Vp
od .

The formula inv is the invariant, the expression V is the variant, and the relation
& must be well-founded.

(I

Law 11.1 value assignment p.108
Given a procedure declaration that refines

procedure Proc (value f : T) = w,f:=E,7,
we have the following refinement:
w:=FE[f\A] C Proc (A) .

The actual parameter A may be an expression, and it should have type T. (If it
does not, the refinement remains valid but subsequent type checking will fail.) As
usual, variables w and f must be disjoint.

(I
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Law 11.2 value specification p.109
Given a procedure declaration that refines

~

procedure Proc (value f: T) = w,f: [pre , post] ,

with post containing no f (but possibly f), the following refinement is valid:

w: [pre[f\A] , post[fo\4o]] C Proc (A),

where Ay is AJw\wp).

a

Law 11.5 value-result assignment p.113
Given a procedure declaration that refines

procedure Proc (valueresult f: T) = w,f:=E,F |
we have the following refinement:
w,a:=E[f\a], F[f\a] C Proc (a) .

a
Law 11.6 value-result specification p.113
Given a procedure declaration that refines

procedure Proc (value result f: T) = w,f: [pre , post[a\f]] ,
with post not containing f, we have the following refinement:

w, a: [pre[f\a] , post[fo\a]] T  Proc (a) .

(Il
Law 1.2 weaken precondition p.7
If pre = pre’, then

w: [pre , post] T w: [pre’, post].

© Carroll Morgan 1990, 1994, 1998



References

[Abr87]

[Bac78]

[Bac80]

[Bac86)]

[Bac87]

[Bac88]

[Bir86]

[Boo82]

[CU8Y]

[Der83]

[DFSS]

[Dij76]

J.-R. Abrial. Generalised substitutions. 26 Rue des Plantes, Paris 75014,
France, 1987.

R.-J.R. Back. On the correctness of refinement steps in program development.
Report A-1978-4, Department of Computer Science, University of Helsinki,
1978.

R.-J.R. Back. Correctness preserving program refinements: Proof theory and
applications. Tract 131, Mathematisch Centrum, Amsterdam, 1980.

R. Backhouse. Program Construction and Verification. Prentice-Hall, 1986.

R.-J.R. Back. Procedural abstraction in the refinement calculus. Report Ser.A
55, Departments of Information Processing and Mathematics, Swedish Uni-
versity of Abo, Abo, Finland, 1987.

R.-J.R. Back. A calculus of refinements for program derivations. Acta Infor-
matica, 25:593-624, 1988.

R.S. Bird. Transformational programming and the paragraph problem. Science
of Computer Programming, 6:159-189, 1986.

H. Boom. A weaker precondition for loops. ACM Transactions on Program-
ming Languages and Systems, 4:668-677, 1982.

Wei Chen and J.T. Udding. Towards a calculus of data refinement. In J.L.A.
van de Snepsheut, editor, Lecture Notes in Computer Science 375: Mathemat-
ics of Program Construction. Springer, June 1989.

N. Dershowitz. The Evolution of Programs. Birkh&user, 1983.

E.W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison-Wesley,
1988.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
1976.

314



[Flo67]

[GM91]

[Gri81]

[Hay93]

[Heh84]

[Hoa69]

[Jon86]

[Kin90]

[MeeT9]

[MG90]

[Mor]

[Mor87]

[Mor88a]

[Mor88b]

[Mor88c]

[Mor88d]

[Mor89]

[MRS87]

References 315

R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Math-
ematical Aspects of Computer Science. American Mathematical Society, 1967.

P.H.B. Gardiner and C.C. Morgan. Data refinement of predicate transformers.
Theoretical Computer Science, 87:143-162, 1991. Reprinted in [MV94].

D. Gries. The Science of Programmaing. Springer, 1981.

[.J. Hayes, editor. Specification Case Studies. Prentice-Hall, London, second
edition, 1993.

E.C.R. Hehner. The Logic of Programming. Prentice-Hall, London, 1984.

C.A.R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576-580, 583, October 1969.

C.B. Jones. Systematic Software Development using VDM. Prentice-Hall,
1986.

S. King. Z and the refinement calculus. In Proceedings of the 3rd VDM-Europe
Symposium, Kiel, 1990. Springer. Lecture Notes in Computer Science 428.

L. Meertens. Abstracto 84: The next generation. In Annual Conference. ACM,
1979.

C.C. Morgan and P.H.B. Gardiner. Data refinement by calculation. Acta
Informatica, 27:481-503, 1990. Reprinted in [MV94].

J.M. Morris. Invariance theorems for recursive procedures. Department of
Computer Science, University of Glasgow.

J.M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9(3):287-306, December 1987.

C.C. Morgan. Auxiliary variables in data refinement. Information Processing
Letters, 29(6):293-296, December 1988. Reprinted in [MV94].

C.C. Morgan. Data refinement using miracles. Information Processing Letters,
26(5):243-246, January 1988. Reprinted in [MV94].

C.C. Morgan. Procedures, parameters, and abstraction: Separate concerns.
Science of Computer Programming, 11(1):17-28, 1988. Reprinted in [MV94].

C.C. Morgan. The specification statement. ACM Transactions on Program-
ming Languages and Systems, 10(3), July 1988. Reprinted in [MV94].

J.M. Morris. Laws of data refinement. Acta Informatica, 26:287-308, 1989.

C.C. Morgan and K.A. Robinson. Specification statements and refinement.
IBM Journal of Research and Development, 31(5), September 1987. Reprinted
in [MV94].

© Carroll Morgan 1990, 1994, 1998



316 References
[MS89]  C.C. Morgan and J.W. Sanders. Laws of the logical calculi. Technical Report
PRG-78, Programming Research Group, 1989.

MV89] C.C. Morgan and T.N. Vickers. Types and invariants in the refinement cal-

culus. Science of Computer Programming, 1989. A shorter version appears in
LNCS 375, van de Snepsheut, J.L.A. (ed).

[MV94] C.C. Morgan and T.N. Vickers, editors. On the Refinement Calculus. FACIT
Series in Computer Science. Springer, 1994.

[Nel89]  G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on
Programming Languages and Systems, 11(4):517-561, October 1989.

© Carroll Morgan 1990, 1994, 1998



Index

Mathematical symbols and phrases
occur first, in order of their appear-
ance in the text; the remainder of the
index is alphabetical. Bold page num-
bers are defining occurrences of the
entry.

Abbreviations, definitions, and laws
may be found either by number or al-
phabetically: laws for example appear
by number under the heading ‘Law’,
and they appear alphabetically as sep-
arate entries indicated by underlining.

C, see refinement

w: [pre , post|, see specification
O (end of law), 7

[w\ E], see substitution into formula
= (is defined), 11

{pre}, see assumption

QO (answer supplied), 13

\V/, see square root

!, see factorial

A, see and

V, see or

—, $ee not

=, see implies

&, see if and only if

V, see quantification

., See spot

d, see quantification

=, see equivalence

=, see entailment

&, see entailment

“7 see decoration

1=, see assignment

z: =7, see assignment, open

;, see sequential composition

=, see equality

4, see refinement marker

G — prog, see guarded command

], see else

(i + Gi — prog;), 36

GG, see disjunction of guards

(i), see refinement marker

w: [pre , inv , post], see
specification invariant

N, see natural numbers

Z, see integers

Q, see rational numbers

R, see real numbers

C, see complex numbers

T+ (positive elements of type), 51

T~ (negative elements of type), 51

+, see addition

—, see subtraction

X, see multiplication
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/, see division, real

~+, see division, integer

[], see ceiling

| |, see floor

©, see natural number subtraction

LI, see maximum

M, see minimum

<, see less than

<, see less than or equal to

>, see greater than

>, see greater than or equal to

|, see divides exactly

z: T, see declaration

|[- - ]|, see local block

®, see simple specification

Zy, see initial variable

{---}, see enumeration

U, see set union

N, see set intersection

—, see set subtraction

X, see set Cartesian product

€, see set membership

#, see set cardinality

{z: T |R-FE}, see comprehension

<, between sequences, see promoted
relation

b.e, see bag occurrences

€, see bag membership

U, see bag union

N, see bag intersection

—, see bag subtraction

+, see bag addition

|---], see enumeration

|z:T|R-E|, see comprehension

(---), see enumeration

q[i], see sequence indexing

m—n, see sequence ellipsis

e:q, see sequence cons

ql + q2, see sequence concatenation

(x:T|R-FE), see comprehension

qli, j], see sequence multiple indexing

p < q, see sequence filter

q[(1,2)], see sequence composition

q[{1,2}], see sequence subsequence
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<, see sequence subsequence

\, see sequence subsequence

q[1—2], see sequence subsegment

=<, see sequence subsegment

qgTn, see sequence prefix

C, see sequence prefix

qdn, see sequence suffix

(@z: T |R-E), see distributed
operator

>, see sequence sum

-+, see function, partial

x, see Cartesian product

—, see function, total

f[s], see function applied to element

f[ss], see function applied to set

f[s:=t], see overriding

flss:=t], see overriding

f @ g, see overriding

<, see function, domain restriction

4, see function, domain corestriction

>, see function, range restriction

B, see function, range corestriction

s(r)t, see relate s by r to t

r~1, see inverse

1, see sequence product

S1— 82— T, see function
declarations associate to right

as[i: = E], see assignment to

sequences

see time complexity

see time complexity

see time complexity

see time complexity

see time complexity

see time complexity

~> (in heap), 118

0, see time complexity

QQ, see time complexity

O, see time complexity

a, see input

w, see output

[post], see coercion

®, see simple specification
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Abbreviation
1.5 default precondition, 11
1.6 assumption, 11
5.6 specification invariant, 46
8.1 simple specification, 68
8.2 initial variable, 69
10.1 sequence assignment, 99
17.1 coercion, 165

18.1 local block initialisation, 187

abort, ‘now’ or ‘later’, 12
abort command (abort), 12, 15,
37,73
absolute value (abs), 52
absorb assumption, 12 see also Law
1.8
absorb coercion, 165 see also Law
17.2
absorption, 259
abstract program, see program
abstraction function, 174
abstraction invariant, see coupling
invariant
actual parameter, see parameter
addition (+), 52
advance assumption, 222 see also
Law 22.2
advance coercion, 222 see also Law
22.1
aliasing, 115
alternation, 36ff, 37, 39
exploits disjunction, 186
laws of, 192ff
tagged, 139
if---fi, 36
if --- then, 39
if ---then - - - else, 40
see also Law 4.1, Law 4.2
alternation guards, 40, 187, 189 see
also Law 4.3
and (A), 19
and, see local invariant
annotation, 11, 166 see also
assumption, coercion
antecedent, 19
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antisymmetry, see order
application, see function
arity, 17
assignment, 8, 27ff, 44, 250
always terminates, 39, 60
multiple, 28
open (z:=7), 29
to sequences, 99
see also Law 1.3, Law 5.2,
Definition 23.1
associative, 23, 83, 258
assumption ({pre}), 11, 254 see also
Abbreviation 1.6, Definition
23.7
atomic program, 30
augment assignment, 167 see also
Law 17.7, Law 17.8
augment assumption, 289 see also
Law B.3
augment coercion, 289 see also Law
B.5
augment guard, 168 see also Law
17.9
augment initialisation, 166 see also
Law 17.5
augment specification, 167 see also
Law 17.6
auxiliary variable, see variable
axiom, 16

backtracking, 183, 293
bag, 77 see also type bag
bag, see conversion function
bag
addition (+), 77
intersection (N), 77
membership (€), 77
occurrences (b.e), 77
subtraction (—), 77
type, see type
union (U), 77
Binary code, see Program
Binary search, see Program
body, of a quantification, 20
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Boolean, 85
bound function, see variant
bound variable, 20, 21, 263
in comprehension, 75
in formula, 20
one replaced by several, 203
rightmost varies fastest, 81
see also free variable
br (binary), 135
Bubble Sort, see Program

Calculator, see Program

Cartesian product (x), 86, 92

case analysis, 36, 66

ceiling ([ ]), 49, 52

change of representation, see state
transformation

Checking for powers of two, see
Program

choose command (choose), 12, 43,
61, 62, 109, 288

client, 1, 3ff

cm (conditional majority), 185

code, Tff, 9, 27

cannot be developed from

infeasible program, 16

for initialisation, see initialisation

is feasible, 10, 15
no comments, 197
refinement of, 184, 190
coercion ([post]), 165, 254 see also
Abbreviation 17.1, Definition
23.8
collapse identical branches, 194 see
also Law 18.7
commutative, 23, 84, 258
quantifiers, 264
complement, 259
complex numbers (C), 51
complexity, see time complexity
composition, see sequence
compound program, 30
comprehension

bag |z: T |R-E]|, 77
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sequence (z: T | R - E), 81
set {z: T|R-FE}, 75
con, see logical constant
concurrency, 217, 235ff
conjunction, see and, conjunctive
normal form
conjunctive normal form, 260
consequent, 19
constant
in formula, 17
in program (const), 53, 61
see also logical constant
context, 57, 256
contract, 1ff
negotiation, 3
contract frame, 14, 45 see also Law
5.4
contrapositive, 261
conversion function
bag, 77, 79
cpx, 62
implicit, 78, 79, 81, 82
int, 62
rat, 62
real, 62
seq, 79
set, 77, 79
Copy Rule, see procedure
coupling invariant, 164ff, 171, 194
referring to global variable, 187
false, 182
cpx, see conversion function
Currying, 137

data refinement, 163ff, 164, 170ff,
190, 256
functional, 173ff, 174
see also state transformation,
Definition 23.13
data-refine assignment, 177 see also
Law 17.16
data-refine guard, 178 see also Law
17.17



data-refine initialisation, 175 see also
Law 17.14
data-refine specification, 176 see also
Law 17.15
data-type invariant, see invariant
Database search, see Program
de Morgan’s laws, 260
debugging, 198
declaration
type, 141ff
see also local variable, local
invariant, logical constant,
formal parameter
decoration of proof step, “ 7, 24
decoration of refinement step
- separates from program, 55
“” 33
=, 65
con, 56
procedure, 103
var, 55
default, none in alternation, 38
default precondition, 11 see also
Abbreviation 1.5
Definition
1.4 feasibility, 10
6.5 feasibility, 58
23.1 assignment, 250
23.2 specification, 251
23.3 refinement, 252
23.4 local variable, 253
23.5 logical constant, 253
23.6 feasibility, 254
23.7 assumption, 254
23.8 coercion, 254
23.9 substitution by value, 255
23.10 substitution by result, 255
23.11 substitution by
value-result, 255
23.12 recursion, 255
23.13 data refinement, 256
definition module, see module
describe, see formula
deterministic, 207
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development history, 197ff

diminish assignment, 170 see also
Law 17.13

diminish assumption, 289 see also
Law B.4

diminish coercion, 290 see also Law
B.6

diminish initialisation, 168 see also
Law 17.10

diminish specification, 169 see also
Law 17.12, Law 17.11

disjoint union, 136

disjunction, see or, disjunctive
normal form

disjunction of guards (GG), 37

disjunctive normal form, 260

distributed operator, 201

(@z:T|R-E), 83ff

distribution, 259

distributive law, 20

divides exactly (]), 37, 52

division
integer (<), 52
real (/), 52

do, see iteration

dom, see function, relation
domain, see function
downloop, see iteration
drop, see sequence suffix

efficiency, 67, 122 see also time
complexity
else, see alternation
else
in alternation, 36
in iteration, 41
em (exists majority), 185
entailment (= and &), 23
distribution of, 24
enumeration
bag |---], 77
sequence (---), 79
set {---}, 74
eof, 133
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ep (even paragraph), 205
equality (=), 31
of programs, 31
equivalence (=), 23
chain of, 24
is not a propositional connective,
23
er, see recursion block
establish assumption, 166 see also
Law 17.4
even paragraph, 205
executable program, see program
executable specification, see
specification
existential, see quantification
exit, 130
exotic operators, 63
expand frame, 69, 72 see also Law
8.3, Law 8.6
exponentiation in logarithmic time,
see Log-time exponentiation
export, see module
expression, 17
undefined, 60ff

Factorial, see Program
factorial (1), 17
false, 18, 85
describes no states, 5, 18
unit of Vv, 259
zero of A, 259
feasibility, 10, 58, 254
checking omitted, 16
see also Definition 1.4, infeasible,
Definition 6.5, Definition 23.6
fi, see alternation
filter, see sequence
final state, see state
financial ruin, 10
finset, 74, 127 see also type
fix initial value, 56 see also Law 6.3
fl, see sequence flatten
flatten nested alternations, 192 see
also Law 18.6
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floor (| ]), 49, 52
fn (in final positions), 119
following assignment, 32 see also
Law 3.5
formal parameter
type of (z : T), 105, 113
see also parameter
formula, 16ff, 258ff
describes a state, 5
general, 22
propositional, 19ff
satisfied by a state, 5
simple, 18
stronger, 6, 31
weaker, 7, 31
fr, see sequence front
frame
laws for, 69ff
see also specification, contract
frame, expand frame
free variable, 21, 263 see also bound
variable
Frontier equality iteratively, see
Program
Frontier of tree iteratively, see
Program
function, 17
application, 87
applied to element (f[s]), 87
applied to set (f[ss]), 87
declaration associates to right
(S1—852—1T), 92
domain (dom), 86
domain corestriction (<€), 88
domain restriction (<), 88
higher-order, 22
injection, 136
injective, see relation
inverse, see relation
one-to-one, see relation
onto, 86
overriding, 87
partial (=), 85
range (ran), 86



range corestriction (&), 88
range restriction (>), 88
source, 85
surjective, 86
target, 85
total (—), 86
type, see type
functional, see relation
functional abstraction, 173ff, 174

gc (Gray code), 132
gcb (Gray code binary), 135
Gray code, see Program
greater than (>), 52
greater than or equal to (>), 52
guard, 36
overlapping, 37
guarded command (G — prog),
36, 41

Handing out sweets, see Program
hd, see sequence head
heap, 118
Heap Sort, see Program
hi (higher heap), 121
hint
in proof, 24
in refinement, 33
histogram, 209
hp (heap), 118

idempotent, 23, 84, 258

if, see alternation

if and only if (<), 19

if statement, see alternation

iff, see if and only if

ill-typed, 59

imperative programming, 4

implementation module, see module

implies (=), 19

import, see module

induction, 212

infeasible, 10, 32, 169 see also
feasibility

inference rule, 16
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initial state, see state
initial variable (1p), 44, 68ff, 69 see
also Abbreviation 8.2
initialisation
code for, 161
in local block, see local block
initialisation
of module (initially), 155,
161, 172
omitted if true, 161
refinement, see refine
initialisation
false, 196
initialised iteration, 272 see also Law
B.1
initially, see initialisation
injection function, see function
injective, see relation
input («), 133, 207
input, 133
Insertion Sort, 103 see also Program
int, see conversion function
integers (Z), 51
introduce assumption, 183 see also
Law 17.19
introduce coercion, 165 see also Law
17.3
introduce local variable, 55 see also
Law 6.1
introduce logical constant, 56 see
also Law 6.2
invariant
checking, 59ff, 100
coupling, see coupling invariant
data-type, 174
introduction in local block, 193
local, see local invariant
loop, see iteration
specification, 46
strengthening, 212
inverse (r~'), 90 see also relation
involution, 259
irreflexivity, see order
italic, for variables, 17
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iteration, 41ff, 46, 255

do---od, 41

checklist for, 46ff
down (loop), 96ff, 101
infinite equivalent to abort, 41
initialised, 48
invariant, 42

tagged, 145
unfolding, 42

up (loop), 96

variant, 44

see also Law 5.5

Largest rectangle under histogram,

see Program

Law

1.1 strengthen postcondition, 7
1.2 weaken precondition, 7

1.3 assignment, 8

1.7 simple specification, 11

1.8 absorb assumption, 12

1.9 merge assumptions, 14
1.10 remove assumption, 15
3.1 open assignment, 29

3.2 skip command, 30

3.3 sequential composition, 31
3.4 skip composition, 31

3.5 following assignment, 32
3.6 leading assignment, 35

4.1 alternation, 37

4.2 alternation, 39

4.3 alternation guards, 40

5.1 strengthen postcondition, 44
5.2 assignment, 44

5.3 skip command, 45

5.4 contract frame, 45

5.0 iteration, 46

6.1 introduce local variable, 55
6.2 introduce logical constant, 56
6.3 fix initial value, 56

6.4 remove logical constant, 57
7.1 remove invariant, 66

8.3 expand frame, 69

8.4 sequential composition, 70
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8.5 leading assignment, 71

8.6 expand frame, 72

11.1 value assignment, 108

11.2 value specification, 109

11.3 result assignment, 110

11.4 result specification, 111

11.5 value-result assignment, 113

11.6 value-result specification,
113

15.1 tagged alternation, 139

15.2 tagged iteration, 145

16.1 refine initialisation, 157

16.2 refine module, 158

17.2 absorb coercion, 165

17.3 introduce coercion, 165

17.4 establish assumption, 166

17.5 augment initialisation, 166

17.6 augment specification, 167

17.7 augment assignment, 167

17.8 augment assignment, 167

17.9 augment guard, 168

17.10 diminish initialisation, 168

17.11 diminish specification, 169

17.12 diminish specification, 169

17.13 diminish assignment, 170

17.14 data-refine initialisation,
175

17.15 data-refine specification,
176

17.16 data-refine assignment, 177

17.17 data-refine guard, 178

17.18 merge coercions, 183

17.19 introduce assumption, 183

17.20 remove coercion, 183

18.2 left-distribution of
composition over alternation,
190

18.3 right-distribution of
assignment over alternation,
191

18.4 remove false guard, 192

18.5 remove alternation, 192

18.6 flatten nested alternations,
192




18.7 collapse identical branches,
194
18.8 select true guard, 196
22.1 advance coercion, 222
22.2 advance assumption, 222
B.1 initialised iteration, 272
B.2 sequential composition, 275
B.3 augment assumption, 289
B.4 diminish assumption, 289
B.5 augment coercion, 289
B.6 diminish coercion, 290
Law of the excluded miracle, see
miracle
leading assignment, 35, 71 see also
Law 3.6, Law 8.5
left-distribution of composition over
alternation, 190 see also Law
18.2
less than (<), 52
less than or equal to (<), 52
linear, see time complexity
Linear search, see Program
list of variables
in assignment, 28
in quantification, 20
lo (lower heap), 121
local block (|[---]|), 54
transformation, see state
transformation
local block initialisation, 187 see also
Abbreviation 18.1
local invariant, 53ff, 94, 118, 281, 290
declaration (and), 53
explicit, 257
implicit, 257
removing, 60, 100, 101, 257
subsumes type, 53
see also local block, type
checking
local variable, 51ff, 253
declaration (var z : T), 51

see also local block, Definition
23.4
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Log-time exponentiation, see
Program
Log-time multiplication, see Program
Log-time transitive closure, see
Program
Logarithm, see Program
logical constant, 54ff, 68, 253
declaration (con z : T'), 54
see also Definition 23.5
loop, see iteration
loop, 130
It, see sequence last

magic command (magic), 13, 15, 73,
160, 165 see also miracle
Majority voting, see Program
map, 17 see also state
mathematical induction, 212
maximum (LI), 52
Maybe, as type, 142
merge assumptions, 14 see also Law
1.9
merge coercions, 183 see also Law
17.18
minimum (M), 52
miracle, 10, 252, 254
excluded, 254
see also magic
mixed program, see program
mod, see modulus
module, 154ff, 155
declaration (module), 155
definition, 160
equivalent to local block, 155
export list (export), 155
for input/output, 208
implementation, 160
import list (import), 158
initialisation, see initialisation
many implementations, 160
refinement, see refine module
transformation, see state
transformation
modulus (mod), 52
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Mortgage, see Program

multiple assignment, see assignment

multiplication (x), 52

multiplication in logarithmic time,

see Program Log-time
multiplication
mw (minimum waste), 201

natural numbers (N), 51
subtraction (&), 52

negation, see not

nl (new line), 208

nondeterminism, 5, 207

nontermination, 41 see also

termination
not (—), 19

od, see iteration
ok (of paragraph), 201
one-point laws, 263
one-to-one, see relation
onto, see function, relation
open assignment, 29 see also Law
3.1, assignment
or (V), 19
order, 144ff
antisymmetry, 144, 151
irreflexivity, 144, 151
partial, 144, 151
reflexivity, 151
total, 144
transitivity, 77, 144, 151
well-founded, 145
ordinal, 283
output (w), 133, 207
output, 133
overriding (f @ g), 87 see also
function

Paragraph, see Program
parameter, 102, 106ff
actual, 105
formal, 105
partial correctness, 125
partial function, see function
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partial operator, 60
partial order, see order
pattern matching, see tag
permutation, 91
ph (partial heap), 120
postcondition, see specification
powerset, see type set
pr (parity), 134
precedence, of operators, 22
precondition, see specification
predicate, 18
laws, 262ff
transformer, see weakest
precondition
predicate calculus, 5
prefix, see sequence
procedure, 102ff
body, 103
call, 102
Copy Rule, 104, 280
declaration (procedure),
102, 103
exported, see module
imported, see module
parametrized, see parameter
recursive, see recursion
Program
Binary code, 135
Binary search, 101
Bubble Sort, 123
Calculator, 170ff
Checking for powers of two, 47
Database search, 140
Factorial, 47, 60, 124ff, 152

Frontier equality iteratively, 153

Frontier of tree iteratively, 152

Gray code, 132ff, 135

Handing out sweets, 49

Heap Sort, 117ff

Insertion Sort, 94ff, 103

Largest rectangle under
histogram, 209ff

Linear search, 92, 130

Log-time exponentiation, 180



Log-time multiplication, 179
Log-time transitive closure, 180
Logarithm, 48
Majority voting, 184ff
Mortgage, 39
Paragraph, 200ff
Power of two, 42ff
Remove element from sequence,
177
Reverse, 135
Square root, 63ff, 197
Summing a list, 146
Summing a tree iteratively,
148, 183
Summing a tree recursively, 147
Swap variables, 32ff, 55
program
abstract, 2, 4ff
annotation, 11, 166
atomic, 30
compound, 30
equal to another, 31
executable, 2ff
infeasible, 10ff
mixed, 9ff
not necessarily executable, 2
testing, 198
tuning, 100, 122
programmer, 3ff
programming hierarchy, 2, 33
programming methodology, 1
promoted relation, 76, 78, 79, 91
proof, 16
axiomatic, natural deduction,
tableau, 17
by contradiction, 16
hint in, 24
obligation, 16
propositional
connective, 19
formula, 19ff
laws, 258ff
proviso, 7
pt (power of two), 42
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quadratic, see time complexity
quantification
body of, 20
existential (3), 21, 262
nested, 22
scoped explicitly, 23
typed, 21
universal (V), 20, 262
untyped, 21
Quick Sort, 123

ran, see function, relation
random numbers, 162
range, in comprehension, 75
rat, see conversion function
rational numbers (Q), 51
re, see recursion block
real, see conversion function
real numbers (R), 51
recursion, 124ff, 255
block, 128, 130, 135, 140
bogus without variant, 125, 127
procedure, 124
proper, 209
stack, 149
tail, 129, 130
variant, 126
see also Definition 23.12
recursive type, see type
reference, 114
causes aliasing, 114
similar to value-result, 115
refine initialisation, 157 see also Law
16.1
refine module, 158 see also Law 16.2
refinement (C), 3, 252
of code, see code
of initialisation, see refine
initialisation
of module, see refine module
ridiculous leads to infeasibility,
32
see also Definition 23.3
refinement marker (<, (1)), 32, 38
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relate s by r to ¢ (s(r)t), 90
relation
domain (dom), 89
domain corestriction, see
function
domain restriction, see function
functional, 89
injective, 89
inverse (r~'), 90
one-to-one, 89
onto, 89
overriding, 89
range (ran), 89
range corestriction, see function
range restriction, see function
single-valued, 89
source, 88
target, 88
total, 89
type, see type
remove alternation, 192 see also Law
18.5
remove assumption, 15 see also Law
1.10
remove coercion, 183 see also Law
17.20
Remove element from sequence, see
Program
remove false guard, 192 see also Law
18.4
remove invariant, 66 see also Law 7.1
remove logical constant, 57 see also
Law 6.4
result assignment, 110 see also Law
11.3
result specification, 111, 116, 281 see
also Law 11.4
Reverse, see Program
rewrite, 133
right-distribution of assignment over
alternation, 191 see also Law
18.3
Russell’s paradox, 151
rv (reverse), 135
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sanserif
for constants and functions, 17
for predicates, 18
satisfy, see formula
search, see Program Binary search,
Program Linear search
select true guard, 196 see also Law
18.8
semantics, 1, 249ff
seq, 79 see also type sequence
seq, see conversion function
sequence
cardinality (#), 80
composition (¢[(1,2)]), 82
concatenation (¢l 4 ¢2), 80
cons (e:q), 80
ellipsis (m—n), 79
filter (p < q), 82
fixed length (seqy), 79
flatten (fl), 200
front (fr), 80
head (hd), 80
indexed from 0, 79
indexing (¢[7]), 79
infinite (seq.,), 79
last (It), 80
multiple indexing (¢li,j]), 81
prefix (¢tn, C), 83
product (IT), 91
sorted, see up
subsegment (¢[1—2], =), 82
subsequence (¢[{1,2}], <, \),
82
suffix (¢ln), 83
sum (), 84, 201
tail (tl), 80
type, see type
sequence assignment, 99 see also
Abbreviation 10.1
sequential composition (; ), 9, 30, 31,
70, 275
omitted between annotations,
165
with initial variable, 70



see also Law 3.3, Law 8.4, Law
B.2
set, see type set
set, see conversion function
set
cardinality (#), 75
Cartesian product (x), 75
intersection (N), 75
membership (€), 75
subtraction (—), 75
type, see type
union (U), 75
set, 74
similar pre- and postconditions, 95,
97, 119
simple formula, see formula
simple paragraph, 200
simple specification, 11, 68 see also
Law 1.7, Abbreviation 8.1
simple substitution, see substitution
single-valued, see relation
skip command (skip), 13, 30, 45 see
also Law 3.2, Law 5.3
skip composition, 31 see also Law 3.4
sm (strict majority), 185
sorted sequence, see up
source, see function, relation
specification, 1ff, 5, 251
w: [pre , post], 5
executable, 1, 7
frame, 5
postcondition, 5
precondition, 5
subspecification, 1
see also Definition 23.2
specification invariant
(w: [pre , inv , post]), 46 see
also Abbreviation 5.6,
invariant
spot (+)
after decoration, 55
in comprehension, 76
in local block, 54
in quantification, 20
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Square root, see Program
square root (y/), 17
stack, related to recursion, 149
state, 4, 17
final, 4
initial, 4
maps variables to values, 4
state transformation, 163ff, 164
of local block, 186ff, 196
of thing, see augment thing,
data-refine thing, diminish
thing
strengthen postcondition, 6, 7, 44 see
also Law 1.1, Law 5.1
strengthening the invariant, see
invariant
stronger formula, see formula
subsegment, see sequence
subsequence, see sequence
substitution, 105ff, 121
by thing, see thing assignment,
thing specification
into formula, 8, 263ff
simple, 105
substitution by result, 255 see also
Definition 23.10
substitution by value, 255 see also
Definition 23.9
substitution by value-result, 255 see
also Definition 23.11
subtraction (—), 52
not applicable to natural
numbers, 59
suffix, see sequence
Summing a list, see Program
Summing a tree iteratively, see
Program
Summing a tree recursively, see
Program
surjective, see function, relation
Swap, 99, 120
Swap variables, see Program
syntax, 1
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tag
in type, 136
pattern matching, 138ff
testing for, 138
tagged alternation, 139 see also Law
15.1
tagged iteration, 145 see also Law
15.2
tags (natural number), 154
tail recursion, see recursion
take, see sequence prefix
target, see function, relation
tc, see transitive closure
term, 17
in comprehension, 76
termination, 5, 12-13, 37, 39, 41, 43,
441, 60
of iteration, 44
see also variant
testing, see program
then, see alternation
time complexity, 117, 207
exponential, 123
linear, 188, 189, 207
logarithmic, 101, 179
optimal, 118, 123
orders (0,9, 0), 123
polynomial, 123
quadratic, 118, 185, 188, 207
relations (X, <, =, -, ~, %), 118
tl, see sequence tail
total, see function, relation
total correctness, 125
total order, 77, 144
transformation, see state
transformation
transitive, 24
transitive closure, 180
in logarithmic time, see Program
transitivity, 91 see also order
transliteration, 185
tree, 142ff, 147ff
infinite, 144
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see also Program Frontier,
Program Summing

true, 18, 85

describes all states, 5, 18

unit of A, 259

zero of Vv, 259
truth table, 19
tuning a program, see program
type, 4, 50

bag, 7T7ff

checking, 58ff

finite set, 74

function, 85ff

not empty in code, 50

recursive, 142ff

relation, 88ff

sequence, 79ff

set, T4ff

undefined expression, 60ff, 92ff, 131

unfeasible, see infeasible

unfold iteration, 281

unfolding, see iteration

unit of an operator, 259 see also
false, true, zero

universal, see quantification

up (sorted sequence), 94

uploop, see iteration

value, 4
value, 105
value assignment, 108 see also Law
11.1
value result, 113
value specification, 109 see also Law
11.2
value-result assignment, 113 see also
Law 11.5
value-result specification, 113 see
also Law 11.6
var, see local variable
variable, 4, 17
auxiliary, 164, 168ff
bound, 21 see also bound
variable



capture, 58, 104

exported, see module

free, 21 see also free variable

imported, see module

list, see list of variables

local, see local variable

not mentioned in specification, 55
variant

bounded below in invariant, 65

in iteration, 44

in recursion, 126

increasing, 66, 141

infinite, 283

not obvious, 149

well-founded, 145
VDM, xii

waste, of paragraph, 201

weaken precondition, 7 see also Law
1.2

weaker formula, see formula

weakest precondition, 197, 250ff

well-founded, see order

well-typed, 59

what without how, 6

while loop, see iteration

wp, see weakest precondition

wt (waste), 201

Z, xii

schema, 212
zero of an operator, 259 see also false,
true, unit
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