
Intrusion Detection using ASTDs

Lionel N. Tidjon, Marc Frappier and Amel Mammar

Abstract In this paper, we show the application of ASTDs to intrusion detection.
ASTD is an executable, modular and graphical notation that allows for the composi-
tion of hierarchical state machines with process algebra operators to model complex
attack phases. Overall, ASTD attack specifications are more concise than industrial
tools like Snort, Zeek, and other attack languages in the literature. For intrusion de-
tection, iASTD (the ASTD interpreter) and Zeek provided similar results. iASTD
produced less false positives and a smaller number of true positives per attack than
Snort, which is an important factor to deal with huge amounts of events. The pro-
cessing time of iASTD on the real-time testbed is slower than Snort and Zeek, but
it can be improved by compiling ASTD specifications into Zeek scripts.

1 Introduction

In Security Operations Center (SOCs), several intrusion detection tools are placed
at different levels of the network to ensure the security and privacy of informa-
tion [1]. Snort [2], a widely used IDS, provides a low-level signature language to
express and detect multi-stage Advanced Persistent Threats (APT) attacks. Zeek [3]
was proposed to overcome some limitations of Snort by providing an event-driven

Lionel N. Tidjon
GRIF, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Canada and
SAMOVAR, Télécom SudParis, Institut Polytechnique Paris, Palaiseau, France. e-mail: li-
onel.nganyewou.tidjon@usherbrooke.ca

Marc Frappier
GRIF, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Canada. e-mail:
marc.frappier@usherbrooke.ca

Amel Mammar
SAMOVAR, Télécom SudParis, Institut Polytechnique Paris, Palaiseau, France. e-mail:
amel.mammar@telecom-sudparis.eu

1

2 Lionel N. Tidjon, Marc Frappier and Amel Mammar

scripting language to precisely specify and identify APT attacks. The writing of
Zeek scripts is essentially programming using functions and global variables. Eck-
mann et al. [4] have proposed STATL, a stateful and domain-independent language
that allows a more abstract representation of attack scenarios than Snort and Zeek
using state machines with actions and state variables. Other attack languages like
LAMBDA [5] and Chronicle [6] have been proposed. LAMBDA [5] provides an ab-
stract description of an attack operation in terms of conditions and effects, expressed
using predicates. Chronicle [6] reconstructs a state machine from event patterns that
can be ordered with timing constraints. Barringer et al. [7] have introduced quan-
tified event automata (QEA), in which universal and existential quantification are
used to quantify parameters of an automaton, allowing to replicate an automaton
and efficient execution.

In this paper, we show the application of ASTDs to intrusion detection. ASTD
is an executable, modular and graphical notation that allows for the composition of
hierarchical state machines using process algebra operators such as flow, sequence,
quantified interleaving and parallel synchronization [8, 9]. It allows one to cap-
ture ”big picture” of complex attacks by graphically specifying their behaviours in
a modular fashion, defining complex relationships between events (i.e., event cor-
relation) to model and detect attack phases. ASTDs can be seen as extensions of
STATL, since state machines are elementary ASTDs. STATL does not compose
state machines using process operators; thus it is less modular. ASTDs offer a more
abstract representation of attacks than LAMBDA, since the logical expressions of
attacks are low-level mechanisms to deal with APT attacks. ASTD operators can
be encoded into Chronicle, but at the expense of loosing abstraction and concision.
Quantified versions of synchronization and interleaving ASTDs [9] are generalisa-
tions of QEA’s quantifications. These quantified versions provide the ability to repli-
cate ASTDs and index them with a quantified variable (e.g., address, port), which
is necessary to construct specifications which are more resilient to attack mutations
and variants.

Our specification approach using ASTDs is based on attack pattern databases
like MITRE’s Common Attack Pattern Enumeration and Classification (CAPEC)
[10] and ATT&CK (Adversarial Tactics, Techniques & Common Knowledge) [11].
We propose to specify a case study of ransomwares with different Snort, Zeek, and
ASTD in the litterature to identify their weaknesses and strengths. The specification
of recent malwares including ransomwares has been conducted in collaboration with
Nokia Threat Intelligence Centre. The aim was to get feedbacks from cybersecurity
experts and improve the ASTD language for intrusion detection.

Among existing tools, we have selected IDSs like Snort and Zeek for comparison;
because they are widely used and well maintained by the cybersecurity community.
Tools related to other attack languages in the literature were either no longer avail-
able, or deprecrated i.e. not able to run on current operating systems, or not work-
ing operationally on real world environments (essentially worked on old datasets).
Our results show that the ASTD notation is more abstract, modular and concise than
Snort and Zeek, while achieving good performance on heterogeneous event sources,
thanks to its advanced event correlation capabilities [9]. Attack detection is done by

Intrusion Detection using ASTDs 3

executing ASTD specifications on online and offline events using the iASTD tool,
whose processing time is slower than Snort and Zeek, but it can be improved by
compiling ASTD specifications into Zeek scripts or other programming languages.

The rest of this paper is structured as follows. The methodology for ASTD attack
specification is described in Section 2. In Section 3, we present the specification of a
case study using Snort, Zeek, and ASTD. Section 4 describes the execution of attack
specifications by the tools. In Section 5, we compare and discuss the results of the
iASTD tool against Snort and Zeek. Section 6 concludes with some perspectives.

Attack ID: 1
Name: Ransomware

CAPEC-ID : 98
Phishing
Severity: High

CAPEC-ID : 549
Local exec. of Code
Severity: High

CAPEC-ID : 233
Privilege Escalation
Severity: High

CAPEC-ID : 203 Manipulate
Registry Information
Severity: Medium

ID: T1060
Name : Registry Run
Key/Start Folder
Tactic: Persistence

ID: T1112
Name : Modify Registry
Tactic: Defense Evasion

ID: T1053
Name : Scheduled Tasks
Tactic: Execution/
Persistence /Privilege
Escalation

ID: T1068
Name : Exploitation for
Privilege Escalation
Tactic: Privilege
Escalation

CAPEC-ID : 564
Run Software at Logon
Severity: High

CAPEC-ID : 552
Install Rootkit
Severity: High

Fig. 1: Ransomware attack pattern from CAPEC and ATT&CK

2 Attack Specification Methodology using ASTDs

CAPEC [10] is one of the most well-known attack pattern database. Cybersecurity
companies use it to figure out how cyber actors exploit weaknesses in applications
and platforms. Another interesting database is ATT&CK [11], which complements
CAPEC in providing more details about attacker actions and techniques. Attack
patterns are hierarchical descriptions: they are decomposed into phases, which are
further decomposed into steps. A step is realized using a combination of events.
A phase or a step may appear in several attack patterns, so there is an interest in
describing phases and steps independently and to compose them to build an attack
specification.

The ASTD notation provides the necessary operators to construct modular for-
mal models of attack patterns. Each phase and step can be defined by its own ASTD,
properly encapsulated and parameterized, in order to allow its reuse in several at-
tack patterns. Attack patterns can be composed together to create a global ASTD
specification of an IDS.

To illustrate our approach, we show an attack pattern for ransomwares in Fig. 1,
extracted from CAPEC and ATT&CK. The pattern states that the attacker starts by
delivering an attached file to the victim machine through email phishing. The victim
downloads the malware by clicking on the malicious link in the email (CAPEC-98).
The malware locally executes and encrypts user files (CAPEC-549). It also mod-

4 Lionel N. Tidjon, Marc Frappier and Amel Mammar

ATTACK_1,

Phase_98, Phase_549,

Step_552, Step_564,

A1 A2 A3

⋓
⋓*
* *

Step_T1112, Step_T1060,

A4 A5

⋓
* *

Phase_203,

Step_T1068, Step_T1053,

A6 A7

⋓
* *

Phase_233,

Fig. 2: ASTD specification of attack pattern of Fig. 1

ifies the registry by adding an entry to the ”run keys” in the registry to be persis-
tent (CAPEC-203). Concurrently, the malware spreads itself and executes malicious
scheduled tasks on the local or remote system (CAPEC-233).

Fig. 2 shows the top-level ASTD specification of the attack pattern of Fig. 1.
Attack phases and steps are composed using the flow operator d to execute them
in parallel. Phases are intuitively perceived as sequential, but in practice, they may
overlap, thus their composition is better represented by a flow. The Kleene closure
“?” allows iterating on each attack step as the attacker can execute the same step
several times. In each step, Ai (i ∈ 1..7) denotes a call to an ASTD which represents
the ASTD step, typically in terms of an automaton.

3 Specification of a case study

We have specified more than 65 malware variants (including ransomwares) from
Nokia, targeting different operating system (Windows, Linux, Android, iOS) and
20 other malware variants from theZoo github project using the ASTD, Zeek, and
Snort languages. In this section, we specify a recent variant of ransomwares called
Gandcrab using ASTD, Snort, and Zeek. The specification of this variant in other
attack languages like STATL can be found in [12]. Gandcrab can be resumed into 6
actions. In action 1, the attacker delivers an email containing an embedded file. Once
the victim runs the attached file, it downloads and executes Gandcrab (action 2). In
action 3, Gandcrab gets the IP address of the victim host by sending a DNS request
to the website ipv4bot.whatismyipaddress.com. In action 4, Gandcrab replicates by
creating a malicious file in the AppData folder (e.g., yxvace.exe). This malicious file
checks-in multiple command and control (C&C) sites using the command nslookup
site name dns server. During C&C check-in, Gandcrab also sends a HTTP GET
request to its C&C site (action 5). Next, Gandcrab encrypts collected data in action
3 and post it to the C&C server (action 6).

Intrusion Detection using ASTDs 5

Actions 1 and 2 are done in phase CAPEC-98. The remainders are done in phase
CAPEC-549. Hereafter, we specify the Gandcrab case study using the Snort, Zeek
and ASTD languages in order to compare their weaknesses and strengths.

3.1 ASTD specification

As Gandcrab operates at both the host and the network levels, we build one attack
model for each and compose them using the flow operator, following the specifi-
cation methodology. In Fig. 3, the main ASTD Gandcrab Ransom is of type flow
and declares two variables v1 and v2, each of type boolean. These variables can be
modified by actions. Gandcrab Ransom composes phases Phishing (CAPEC-98)
and Exec Code (CAPEC-549) using the flow operator d.

GrandCrab_Ransom,

⋑

|||ipsrc:string |||portsrc:stringPhishing , *

Downld (ipsrc, portsrc, v1, v2)

|||ipsrc:string |||portsrc:string

Exec_Code ,

Net_Exec_Code (ipsrc, portsrc, v1)

|||

* |||ip:string

Host_Exec_Code (ip, v2)

*

, var v1, v2 :bool = false

0 1
e(?x0:HTTPSession)[g0]

Downld (ipsrc:string, portsrc:string, v1:bool, v2:bool), aut

/A0
2 3

e(?x3:HTTPSession)[g3]/A2

Net_Exec_Code(ipsrc:string, portsrc:string, v1:bool), aut

5

e(?x2:HTTPSession)[g2]e(?x1:DNSSession)[g1]

4
>

>

6

e(?x4:WinEvtLog)[g4]

>

Host_Exec_Code (ip:string, v2:bool), aut

/A3e(?x6:WinEvtLog)[g6]

|||

7

8

aut

9
e(?x7:WinEvtLog)[g7]

10

aut

e(?x5:WinEvtLog)[g5]

e(?x9:WinEvtLog)[g9]

12

aut

13

e(?x8:WinEvtLog)[g8]

11
/A4

>
>

>

Fig. 3: Gandcrab crypto-worm specification

The first phase (i.e., Phishing) is a quantified interleaving ASTD that allows de-
tecting the attacker’s action 2. Phishing and its nameless sub-ASTD (i.e., |||portsrc
:string) interleave instances of its sub-ASTD, indexed by variables ipsrc (source
address) and portsrc (source port). Its sub-ASTD is a nameless Kleene closure and
it is identified by ?. It allows iterating on an ASTD call that refers to the ASTD

6 Lionel N. Tidjon, Marc Frappier and Amel Mammar

definition of Downld described in Fig. 3. Downld is an ASTD automaton that re-
ceives parameters ipsrc, portsrc, v1, and v2 from its calling ASTDs. Being called
within two quantified interleaves, there is an instance of this automaton for each
pair of values of ipsrc and portsrc. The initial state 0 has an outgoing transition
labeled by the event e(?x0:HTTPSession) and a guard [g0]. The local variable x0
has a user-defined type HTTPSession. HTTPSession is described in an ontology to
process multiple HTTP sessions from the network traffic.

From the initial state 0, the transition executes action A0 (e.g., A0 = { v1 = true;
v2 = true;}) when the guard g0 is true. The guard g0 checks if HTTP sessions con-
tain signatures of the malicious file during downloading (e.g., GET /js/kukul.exe).
When transition 0→1 is executed, v1 and v2 take value true to notify other ASTDs
that the phishing phase is done. The second phase (i.e., Exec Code) interleaves
two nameless ASTDs. Each one respectively interleaves host and network events
to identify Gandcrab actions. The first one (i.e., |||ipsrc:string) and its nested com-
ponent (i.e., |||portsrc: string) allow multiple instances of the ASTD automaton
Net Exec Code, indexed by ipsrc and portsrc. Within Net Exec Code, the transition
2→3 tracks the Gandcrab action 3 in the network traffic. Next, the transition 3→4
detects the Gandcrab’s action 5 when g2 holds. From state 4, the transition 4→5
checks the malicious action 6. The action A2 (e.g., A2 = {if v1 then print ”Gand-
Crab CnC”; }) shows an alert only if the phishing phase tooks place.

Concurrently, the transition 6→7 in ASTD Host Exec Code also tracks the
Gandcrab action 4 in host events. It is labeled by the event e(?x4:WinEvtLog) where
x4 is a transition local variable of type WinEvtLog. Type WinEvtLog has a structure
similar to Windows event logs. The guard g4 is true when the Gandcrab file cre-
ates a process that checks-in its C&C domains using the Windows command (e.g.,
nslookup carder.bit ns1.wowservers.ru). Once g4 is true, the transition moves to the
shallow final state 7. The state 7 is a complex state (i.e., an interleaving ASTD) that
composes two ASTD automatons. Within the first automaton, the transition 8→9
checks if the previous nslookup command successfully established a DNS connec-
tion to C&C servers (e.g., ns1.wowservers.ru). Concurrently, the transition 10→11
detects when the nslookup command process forks into another process svchost.exe
to leak system information over the open port 3389.

3.2 Snort specification

From the case study, we can deduce 4 detection signatures [12], each referring to
phases CAPEC-98 and CAPEC-549. These signatures are low-level representations
of transitions in ASTD automatons Downld and Net Exec Code (see Fig. 3). For
example, the following signature

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Malicious Software Downloading";
flow:established, from_client; content:"GET"; http_method; content:".exe HTTP/1.";
fast_pattern:only; content:"Connection: Keep-Alive"; http_header; content:"Accept
|3a 20|";http_header;content:"User-Agent: Mozilla";http_header;content: "Host|3a|";
pcre:"/Host\x3a\x20(:?[0-9]{1,3}\.){3}[0-9]{1,3}/H"; reference: capec,CAPEC-98;
classtype:Downloader; sid:100000004; rev:1;)

Intrusion Detection using ASTDs 7

detects the Gandcrab downloading through the attached file (i.e., Action 2). This
signature corresponds to the ASTD Downld. It targets the inbound HTTP traf-
fic ($HOME NET) directed to the C&C server ($EXTERNAL NET). The clause
any means that the signature accepts all connection ports from the inbound traffic.
Within packet flows, it checks if the HTTP method is GET, the HTTP uri contains
pattern .exe HTTP/1., the HTTP connection is kept alive, the Accept header is used,
the user-agent is Mozilla and the Host header contains the ip address of the C&C
server. The unique pattern .exe HTTP/1. precisely characterizes the downloader tro-
jan.

3.3 Zeek specification

We have specified the Gandcrab phases using Zeek scripts and signatures [12]. Zeek
signatures [3] do essentially pattern matching like Snort. The strength of Zeek is
shown using Zeek scripts. The script below is a low-level representation of ASTD
automatons Downld (CAPEC-98) and Net Exec Code (CAPEC-549).

...
#BLOCK 0
export {

...
global v1: bool = F;
global v2: bool = F;
global state_downld: int = 0;
global state_net_exec_code: int = 2;
...

}
...
event http_request (c: connection, ...)
{
#BLOCK 1 (CAPEC-98)
local g0: bool = (c$http$method == "GET")
&& (/\/[a-z]+\.(bin|exe)/ in c$http$uri)
&& (/Mozilla/ in c$http$user_agent)
&& (/([0-9]{1,3}\.){3}[0-9]{1,3}/
in c$http$host);

if (state_downld == 0 && g0)
{

A0(v1, v2);
state_downld = 1;

}
#BLOCK 3 (CAPEC-549)
local g2: bool = (c$http$method=="GET")
&& (|c$http$uri| == 1)
&& (/[a-z]+\.(bit|ru)/ in c$http$host);

if (state_net_exec_code == 3 && g2)
{

state_net_exec_code = 4;
}
#BLOCK 4 (CAPEC-549)
local g3: bool=(c$http$method=="POST")
&& (/[a-z]+\.(bit|ru)/ in c$http$host)
&& (/Mozilla/ in c$http$user_agent);

if (state_net_exec_code == 4 && g3)
{

Issue an alert
A1(v1, v2);
state_net_exec_code = 5;

}
} # end http_request

event dns_request (c: connection, ...)
{
#BLOCK 2 (CAPEC-549)
local g1: bool =(/\x00\x01\x00\x00/
in cdnsquery)
&& (/whatismyipaddress/
in cdnsquery);

if (state_net_exec_code == 2 && g1)
{

state_net_exec_code = 3;
}

} # end dns_request

Similar to ASTD Gandcrab Ransom, the header of the script contains two global
variables v1, v2 to notify that the downloading phase is done (see block 0). The
header also declares two state variables state downld and state net exec code for
maintaining states during the correlation. In the body of the script, we have two
Zeek event functions: event http request(c: connection, ...) and event dns request
(c: connection, ...). They respectively catch HTTP and DNS requests. Within the
http request event, the block 1 detects the Gandcrab’s action 2. The action function
A0 is executed to set variables v1 and v2 to true. Within the dns request event, the
block 2 targets action 3. Within the http request event, the block 3 detects action 5.
Next, the block 4 checks the malicious action 6.

8 Lionel N. Tidjon, Marc Frappier and Amel Mammar

4 Execution of attack specifications

The execution process of Snort signatures is described in [2], and Zeek scripts in
[3]. In Fig. 4, the ASTD-based detection process is shown. In a corporate network,
cyber-analysts specify attacks using the graphical editor eASTD and following the
attack strategy methodology provided in 2. They also create new custom event types
(e.g., sFlow, DNP3 Session) using the ontology editor Protégé. These event types
are parsed into JSON to feed eASTD and iASTD 1. ASTD attack specifications are
saved in the local host in a specific repository, depending of the attack domain (net-
work, host, both). A watcher agent automatically synchonizes local specifications
and new event types to a remote network node, where iASTD is installed. iASTD
has five modules.

Capture
(hcap, netcap, astd_consumer)

Pcap files Log files

offline online

Network
streams

Kafka
producers

Win/Syslog
event streams

Ontology
parser

eASTD
editor

Event types

ASTD specifications

Decoding/Encoding

Static Analysis

Execution Engine
iASTD IDS

raw events

structured
events

ASTD &
Event
objects

*.owl,
*.rdf files

Json event
types

*.owl, *.rdf files

*.spec files

Json
event types

*.spec files

Linking
action
codes

DynLink

Action

Attack strategy

Loading
action
plugins

netspec hostspec hybridspec

Fig. 4: ASTD-based detection process

The capture module collects different event sources in offline and online mode.
In offline mode, it reads pcap files (option -pcap) and log files (option -i). Only
log files containing Windows/Syslog traces in the ontology format are recognized.
The attack specfication can be run from command line (e.g., ./iASTD -s my.spec
-pcap my.pcap), or in fully automated mode. In online mode, the capture mod-
ule collects network streams (HTTP sessions, DNS sessions, or custom sessions)
from network interfaces provided in a YAML configuration file. It also gathers Win-

1 The tools are available at https://depot.gril.usherbrooke.ca/fram1801/iASTD-public

Intrusion Detection using ASTDs 9

dows/Syslog event streams on endpoints using the shipping agent hcap. The agent
hcap is installed on multiple endpoints, where it scans log files and sends real-time
events to iASTD on port 9092. The capture module also collects network flows/ses-
sions from astd producer, a shipping agent based on the rdkafka library. The agent
astd consumer allows one to consume Kafka events to feed iASTD.

The decoding/encoding module essentially identifies which type of event stream
is being read (decoding) and structures it in the corresponding ontology format
(encoding). The static analysis module is based on the Flex/Bison analyzer and
it checks if the input structured events and attack specifications are syntactically
and semantically corrects i.e., well parenthesized, structured and not containing un-
known keywords. Next, this module extracts the hierachichal structure of ASTD
specifications and stores into ASTD objects. It also stores event contents into event
objects. Since transition actions contain executable code, they are compiled and
linked at runtime using the DynLink library. Next, they are loaded as plugin mod-
ules in the execution engine at runtime for intrusion detection.

The execution engine runs ASTD objects on events using semantic rules. The
semantic rules for ASTDs are provided in [9]. The iASTD detector can efficiently
execute ASTD specifications on event streams in n log m, where n is the size of the
ASTD specification and m the size of the quantification variable types [13]. Once an
attack behavior is detected, it executes real-time actions such as alerting, blocking
of a port, or dropping of a malicious traffic.

5 Experiments

We have selected two existing real-world datasets (i.e., CSE-CIC-IDS2018 [14] and
CTU [15]) and we have built a testbed close to a real world environment for evalu-
ation. CSE-CIC-IDS2018 [14] is a huge dataset of terabytes of packet captures and
audit traces (normal, attack), where 18 attacks were executed (including Golden-
Eye, HOIC DDoS HTTP, LOIC DDoS UDP, SQL Injection, XSS, FTP and SSH
BruteForcing) on the Amazon Web Service (AWS) platform. CTU [15] is a dataset
of gigabytes of botnet traffic (normal, background), where 7 botnets have been exe-
cuted (Neris, Virut, Donbot, Sogou, Qvod, Rbot, NSIS.ay). For the real-time testbed,
20 attacks (including Gandcrab, TeslaCrypt, WannaCry and Petya) were specified
in the IDS tools and executed on the AWS platform.

5.1 Traffic and audit data generation

For the real-time testbed, we have selected 14 services to simulate random nor-
mal user and attacker behaviors including HTTP, HTTPS, SSH, SMTP, TELNET,
and FTP. Normal users perform benign activities including accessing HTTP/HTTPS
pages and sending/consulting emails. Concurrently, we semi-randomly run each at-

10 Lionel N. Tidjon, Marc Frappier and Amel Mammar

tack in different time frames to ensure that it is close to real-world attacks. This
means that attacker can repeat the same phase or the previous one in another phase
in different time intervals.

Hacker

R1 R2

Target 1 Target 2

Fig. 5: AWS Testbed

The simulation network consisted of 2 work groups, each connected through 2
router servers (i.e., R1 and R2), running on Ubuntu 16.04 (see Fig. 5). Each work
group had 2 local machines running on Windows 10. The first work group (contain-
ing Target 1) had been patched with the latest Windows updates while the second
(containing Target 2) was running without Windows patches. The system monitor
(Sysmon) has been installed on Target 1 and Target 2. Snort (version 2.9.15) and
Zeek (version 3.0.0) were installed on R1 and controlled the inbound traffic directed
to the first work group. Kafka and iASTD were installed on R2 to collect and analyze
Windows/Syslog events from work groups and router servers.

The network infrastructure was built on Amazon Elastic Compute Cloud (Ama-
zon EC2) using T2 Small and Medium instances. The built-in network had a band-
width of 550 Mbits/s while all the aforementioned services were running.

5.2 Results

We consider two metrics to compare the accuracy and performance of IDS tools:
detection rate (DR) and false positive rate (FPR). The detection rate (DR) is the
probability that the IDS outputs an alert when there is an intrusion. The false posi-
tive rate (FPR) is the probability that the IDS outputs an alert although the behaviour
of the system is normal. These metrics are expressed of the form,

DR =
TP

TP+FN
FPR =

FP
FP+TN

where False Positive (FP) is the number of normal alerts misclassified as malicious,
True Positive (TP) is the number of malicious alerts correctly classified as malicious,
False Negative (FN) is the number of malicious alerts misclassified as normal, and
True Negative (TN) is the number of normal alerts correctly classified as normal.

Existing datasets. Results for CSE-CIC-IDS2018/CTU datasets and the real-time
testbed are reported in Table 1. The notation Zeek-sig/Zeek-script is used to distin-

Intrusion Detection using ASTDs 11

guish results of two specification versions for Zeek. Zeek-sig denotes a specification
that uses only signatures while Zeek-script denotes a specification using scripts.

Table 1: Evaluation of IDS tools
CSE-CIC
-IDS2018

Zeek-sig/Zeek-script Snort iASTD
TP TN FP FN DR(%) FPR(%) TP TN FP FN DR(%) FPR(%) TP TN FP FN DR(%) FPR(%)

LOIC DDoS UDP 0/1 0/0 164/0 0/0 0/100 100/0 8904 4914 912 0 100 15.65 1 0 0 0 100 0
HOIC DDoS HTTP 0/1 0/0 289342/0 0/0 0/100 100/0 197 5071 755 0 100 13.31 1 0 0 0 100 0
SSH BruteForce 0/1 0/0 94216/0 0/0 0/100 100/0 67 94 0 0 100 0.00 1 0 0 0 100 0
FTP BruteForce 0/1 0/0 193392/0 0/0 0/100 100/0 3868 94 0 0 100 0.00 1 0 0 0 100 0
GoldenEye DoS 0/1 0/0 27751/0 0/0 0/100 100/0 1 96 8 0 100 7.84 1 0 0 0 100 0
Web BruteForce 71/1 0/0 0/0 0/0 100/100 0/0 3 2682 73 0 100 2.64 1 0 0 0 100 0
XSS BruteForce 19/1 0/0 0/0 0/0 100/100 0/0 1 2482 0 0 100 0.00 1 0 0 0 100 0
SQL Injection 15/1 0/0 0/0 0/0 100/100 0/0 2 2482 0 0 100 0.00 1 0 0 0 100 0
CTU
Neris 3/1 0/0 0/0 0/0 100/100 0/0 1 131 2 0 100 1.50 1 0 0 0 100 0
Rbot 2/1 0/0 0/0 0/0 100/100 0/0 10 5249 77 0 100 1.45 1 0 0 0 100 0
Rbot DoS 4/1 0/0 0/0 0/0 100/100 0/0 3 6684 20 0 100 0.30 1 0 0 0 100 0
Virut 2/1 0/0 0/0 0/0 100/100 0/0 1 11 0 0 100 0 1 0 0 0 100 0
Donbot 178/1 0/0 0/0 0/0 100/100 0/0 91 92 10 0 100 9.8 1 0 0 0 100 0
Sogou 2/1 0/0 0/0 0/0 100/100 0/0 1 15 0 0 100 0 1 0 0 0 100 0
qvod 2/1 0/0 0/0 0/0 100/100 0/0 2 501 36 0 100 6.7 1 0 0 0 100 0
NSIS.ay 3/1 0/0 0/0 0/0 100/100 0/0 3 97 0 0 100 0.00 1 0 0 0 100 0
Real-time
WannaCry 6/3 0/0 0/0 0/0 100/100 0/0 6 2434 58 0 100 2.32 2 0 0 0 100 0
Petya 13/4 0/0 0/0 0/0 100/100 0/0 22 1336 47 0 100 3.40 2 0 0 0 100 0
TeslaCrypt 4/1 0/0 0/0 0/0 100/100 0/0 8 20 0 0 100 0 2 0 0 0 100 0
Gandcrab 4/1 0/0 0/0 0/0 100/100 0/0 10 39 0 0 100 0 2 0 0 0 100 0
Normal 0/0 0/0 0/0 0/0 0/0 0/0 0 0 0 0 0 0 0 0 0 0 0 0

Overall, Zeek-script/Snort/iASTD sucessfully detected CSE-CIC-IDS2018 and
CTU attacks with a DR of 100%. Zeek-script produced less TPs than Zeek-sig per
attack thanks to its correlation capabilities using global state variables. In Zeek-sig,
we have attempted to specify signatures for Distributed DoS (DDoS) and SSH/FTP
Brute attacks, essentially based on protocols and weak observed contents (e.g.,
GET / HTTP/1., User-Agent: Mozilla) that were not unique enough (FPR =
100%). In addition, Zeek-sig detected SQL injection, XSS and Web BruteForce
with a DR of 100%, because more precise and unique patterns were found (e.g.,
.php?id=3+, script\x25\x33\x45).

Snort generated a significant FPR for LOIC DDoS UDP (15.65%) and HOIC
DDoS HTTP(13.31%). Since these attacks have not unique signatures (e.g., GET /)
, one must rely on the statistical distribution of packets per second. We have used
Snort features like threshold to reduce the number of alerts. Snort also generated a
significant number of TPs for LOIC DDoS UDP (8904), HOIC DDoS HTTP (197),
FTP BruteForce (3868), SSH BruteForce (67), and Donbot (91).

Overall, Zeek-script and iASTD achieved better detection performance than
Zeek-sig and Snort with a high DR of 100% and no FP. The tools were able to
correlate multiple HTTP and DNS connections from CSE-CIC-IDS2018 and CTU
attacks.
Real-time testbed. In Table 1, Zeek/Snort/iASTD detected ransomware attacks
with a DR of 100%. Zeek-script produced less TPs than Zeek-sig and no FP for
WannaCry and Petya attacks. For Zeek-script, we got 3 TPs for WannaCry and 4

12 Lionel N. Tidjon, Marc Frappier and Amel Mammar

TPs for Petya using a behavioral analysis over SMB based on the entropy [12]. In
addition, Zeek-script did not generated FPs on the normal traffic.

Like Zeek-sig, Snort matched network sessions only on a stream-by-stream basis
and generated redundant TPs per attack (e.g., 22 TPs for Petya). In addition, Snort
produced a significant FPR compared to Zeek-script and iASTD for WannaCry and
Petya attacks (2.32% for WannaCry, 3.4% for Petya).

Oppositely to Snort and Zeek, iASTD can correlate both network sessions and
host logs by generating no FP and 1 TP per attack for each environment (i.e., 1 TP
for host and 1 TP for network). Similar to Zeek and Snort, iASTD did not generate
FPs on the normal traffic.

5.3 Discussion

Snort is a low level, stateless, event pattern language. Zeek is a scripting language
that is essentially a programming language. Its composition mechanisms are those of
imperative programming languages: procedural abstraction and programming com-
position using if-then-else, case analysis, and state variables. Creating Zeek script
is a daunting, complex and error-prone task. ASTD is a more abstract language. Its
state machines offer a graphical, deep representations of attack behavior and state
transitions. Its process algebra operators free the specifier from dealing with low
level composition of attack specification elements. An attack can be specified in
a modular fashion, following the natural language description of an attack’s struc-
ture into phases and steps. Attack specifications can be easily composed to create
a global IDS specification. Snort and Zeek signatures can be easily represented by
ASTD specifications using automatons and quantified interleaves.

Verification tools [9] can be used to check the correctness of ASTD specifications
and check properties about them. ASTDs are also extensible, portable and hetero-
geneous as they are domain-independent. This means that they can be executed in
any environment and on any source (e.g., network/host events, natural events). It is
an important factor to deal with complex attacks that operate on common networks
but also on cyber-physical systems. Snort and Zeek languages require additional up-
dates of the source code to be extended in new environments (e.g. host). In addition,
Zeek and Snort signatures refer to unique strings (e.g., GET /wordpress/?ARX8)
that can easily be changed by the attacker and make them obsolete. ASTD operators
like quantified interleaving allow one to abstract from a particular machine (ip ad-
dress, name) and to specify any ordering constraint, at any level of abstraction (e.g.,
ip, host name, uuid, etc.) and in any combination.

Zeek is stateful using state variables and event functions. It can correlate multi-
ple network events and latterly host events after some manual updates of the source
code. Being abstract and domain-independent, the stateful language ASTD corre-
lates multiple diverse events in any environment, thanks to process algebra opera-
tors and ontologies that are used on transitions of ASTD automata to structure the
knowledge about events. Snort cannot correlate different network connections (e.g.,

Intrusion Detection using ASTDs 13

HTTP, DNS, SSH). Snort features like flowbits can only handle packets within the
same connection.

As measured in our experiments, Snort has a significant FPR and a high DR on
average. The processing time of Snort on the real-time testbed is also very low on
average (2.336s for 1Gb packets, 8.201s for 10Gb packets). Zeek-script has a very
low FPR and a high DR on average. Its processing time on the real-time testbed is
low on average (7.480s for 1Gb packets, 29.766s for 10Gb packets). iASTD has a
very low FPR and a high DR average but its processing time on the real-time testbed
is relatively medium on average (20.184s for 1Gb packets, 96.778s for 10Gb pack-
ets). For network intrusion detection, Snort is faster than Zeek and iASTD since it
matches each single network connection without correlating them. Zeek can cor-
relate multiple network connections and it is faster than iASTD. For network and
host intrusion detection, iASTD was able to correlate both network connections
and Windows/Syslog events but the huge amount of events affected considerably
the detection time (188.667s for 10Gb packets and 87 450 mixed Windows/Syslog
events).

To improve the processing time of iASTD for network detection, we are currently
working on translation rules to generate Zeek scripts from ASTD specifications 2.
Hence, one could use the Zeek engine to run ASTD specifications on network event
streams. The Zeek scripts generated from ASTD specifications are as efficient as
manually written Zeek scripts. Another way is to generate Snort signatures from
ASTD specifications to process network events faster. This approach involves sev-
eral FPs due to the aforementioned limitations of Snort. Thus, it is not suitable for
network detection.

6 Conclusion

We have compared Zeek, Snort, and ASTD for intrusion detection. Snort is a state-
less language that offers very limited event correlation capabilities. Both Zeek
scripts and ASTD are stateful and thus better support event correlation. Conse-
quently, Snort produces more redundant true positives and false positives than Zeek
and ASTD. Zeek scripts and ASTD are equivalent in terms of detection and corre-
lation capabilities. However, Zeek being a scripting language, it is less abstract than
ASTD. Thanks to its process algebra composition operators, ASTD makes it easier
to create, reuse, compose and maintain attack specifications. Snort is the most effi-
cient IDS in terms of processing time because it does not support correlation. Zeek
is faster than iASTD, but it should be possible to compile ASTD specifications into
Zeek scripts to execute ASTD specifications more efficiently while benefitting from
the features of the Zeek execution environment.
2 The translation rules and the compiler are available at https://depot.gril.usherbrooke.ca/lionel-
tidjon/castd

14 Lionel N. Tidjon, Marc Frappier and Amel Mammar

Acknowledgements This work was supported in part by NSERC (Natural Sciences and Engi-
neering Research Council of Canada). We thank Felix Vigneault and Jonathan Martineau for their
contribution to the development of the iASTD tool. We thank Nokia Canada and CSE (Communi-
cations Security Establishment) of Canada for their support.

References

1. L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion detection systems: A cross-
domain overview,” IEEE Communications Surveys & Tutorials, 2019. [Online]. Available:
https://doi.org/10.1109/COMST.2019.2922584

2. M. Roesch, “Snort - lightweight intrusion detection for networks,” in Proceedings of the 13th
USENIX Conference on System Administration, ser. LISA ’99. Berkeley, CA, USA: USENIX
Association, 1999, pp. 229–238.

3. V. Paxson, “Bro: A system for detecting network intruders in real-time,” in Proceedings of the
7th Conference on USENIX Security Symposium - Volume 7, ser. SSYM’98. Berkeley, CA,
USA: USENIX Association, 1998, pp. 3–3.

4. S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “Statl: An attack language for state-based
intrusion detection,” J. Comput. Secur., vol. 10, no. 1-2, pp. 71–103, Jul. 2002.

5. F. Cuppens and R. Ortalo, “Lambda: A language to model a database for detection of attacks,”
in Recent Advances in Intrusion Detection. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 197–216.

6. B. Morin and H. Debar, “Correlation of intrusion symptoms: An application of chronicles,” in
Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2003, pp. 94–112.

7. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard, “Quantified event au-
tomata: Towards expressive and efficient runtime monitors,” in FM 2012: Formal Methods.
Springer Berlin Heidelberg, 2012, pp. 68–84.

8. M. Frappier, F. Gervais, R. Laleau, B. Fraikin, and R. St-Denis, “Extending statecharts with
process algebra operators,” Innovations in Systems and Software Engineering, vol. 4, no. 3,
pp. 285–292, Oct 2008.

9. L.N. Tidjon, M. Frappier, M. Leuschel, and A. Mammar, “Extended algebraic state-transition
diagrams,” in 2018 23rd International Conference on Engineering of Complex Computer Sys-
tems (ICECCS), Dec 2018, pp. 146–155.

10. T. M. Corporation, “Common attack pattern enumeration and classification (capec),” Tech.
Rep., 2013, http://makingsecuritymeasurable.mitre.org/docs/capec-intro-handout.pdf.

11. B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin, D. P. Miller, C. Wampler,
S. M. Whitley, and R. D. Wolf, “Finding cyber threats with att&ck-based analyt-
ics,” Tech. Rep., 2017, https://www.mitre.org/sites/default/files/publications/16-3713-finding-
cyber-threats%20with%20att%26ck-based-analytics.pdf.

12. iASTD repository, “Universite de sherbrooke,” https://depot.gril.usherbrooke.ca/fram1801/
iASTD-public, 2019.

13. B. Fraikin and M. Frappier, “Efficient symbolic computation of process expressions,” Science
of Computer Programming, vol. 74, no. 9, pp. 723 – 753, 2009, special Issue on the Fifth In-
ternational Workshop on Foundations of Coordination Languages and Software Architectures
(FOCLASA?06).

14. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion de-
tection dataset and intrusion traffic characterization,” in Proceedings of the 4th International
Conference on Information Systems Security and Privacy, ICISSP 2018, Funchal, January
22-24, 2018., 2018, pp. 108–116.

15. S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet detection
methods,” Computers & Security, vol. 45, pp. 100 – 123, 2014.

