Translating Alloy and Extensions to Classical B

Sebastian Krings®, Michael Leuschel®, Joshua Schmidt?®, David Schneider?®,
Marc Frappier?

@ Institut fir Informatik, Universitdt Disseldorf
Universitdtsstr. 1, 40225 Disseldorf, Germany
b Université de Sherbrooke, Québec, Canada

Abstract

In this article, we introduce a denotational translation of the specification lan-
guage Alloy to classical B. Our translation closely follows the Alloy grammar.
Each construct is translated into a semantically equivalent component of the
B language. In addition to basic Alloy constructs, our approach supports in-
tegers, sequences and orderings. The translation is fully automated and our
implementation can be used in PROB. We evaluate the usefulness by apply-
ing AtelierB and PROB to translated models, showing benefits for proof and
constraint solving with integers and higher-order quantification.

1. Introduction

Both B [1] and Alloy [2] are specification languages based on first-order logic.
The languages share several features, such as native support for integers, sets
and relations as well as user-defined types. However, there are also considerable
differences. For instance, one of B’s key concepts is to encode state changes by
means of transitions, effectively computing successor states featuring all vari-
ables. In contrast, Alloy allows defining orderings over certain types.

Another difference between Alloy and B is tool support, especially when it
comes to available backends for constraint solving. For Alloy, the Alloy An-
alyzer [2] is used to compute models by translating Alloy predicates to SAT
using Kodkod [3]. The most prominent constraint solver for B, PrRoB [4] [l [d],
however mainly relies on constraint logic programming [7]. In particular, it uses
the CLP(FD) library of SICStus Prolog [8] and extends it to support constraints
over infinite domains [9]. Additionally, PROB allows using other backends, such
as SMT solvers [10] or, again, Kodkod [II].

The different constraint solving techniques show different performance char-
acteristics [I2]. Certain predicates can be solved faster by using a particular

Email addresses: sebastian.krings@hhu.de (Sebastian Krings),
michael.leuschel@hhu.de (Michael Leuschel), joshua.schmidt@hhu.de (Joshua Schmidt),
david.schneider@hhu.de (David Schneider), marc.frappier@usherbrooke.ca (Marc
Frappier)

Preprint submitted to Elsevier December 17, 2019

backend or combination of backends; others cannot be handled by a particular
solving technique at all. We thus suppose that a translation from Alloy models
to B models serves different purposes:

e It provides Alloy users access to a set of new backends, and might enable
constraint solving for Alloy models that cannot be handled efficiently by
the Alloy Analyzer,

e it enables the application of the AtelierB provers [I3] to Alloy models,

e it enables the usage of PROB as a second toolchain to validate the results
of the Alloy Analyzer,

e it provides new test cases and benchmarks to the B community and should
aid in improving PROB,

e it helps communication between the Alloy and B communities.
Our translation is integrated into PROB and is available at:
https://www3.hhu.de/stups/prob
Details about installing and using our translation can be found at:
https://github.com/hhu-stups/alloy2b-doc

This article is the extended version of our original ABZ submission [14]. For
this article we extend our former work [14] in different aspects:

e The informal, more intuitive description of the translation from Alloy to
B has been replaced by a formal description.

e We revised the translation of operations on orderings.

e The translation supports more Alloy constructs than the initial one. In
particular, we added support for sequence operations, additional con-
straints on relations defined in util/relation and completed the trans-
lation of the join operator as well as all multiplicity annotations.

o We describe the tooling used in our translator in greater detail.
e Several special and edge cases are discussed more thoroughly.

e The empirical evaluation has been extended with more examples.

2. Introduction to Alloy and B

In the following, we will give brief introductions to Alloy and B, discussing
their approach to modeling and their specific features. Afterwards, we will point
out the main differences between both languages.

https://www3.hhu.de/stups/prob
https://github.com/hhu-stups/alloy2b-doc

2.1. Primer on Alloy

The Alloy notation is based on first-order logic with n-ary finite relations as
the only type of terms. Sets are represented as unary relations. Basic sets and
relations are defined using signatures, a construct similar to classes in object-
oriented programming languages, which supports inheritance.

An Alloy specification consists of a set of signatures, noted sig, which ba-
sically define sets and relations, and a set of constraints, noted fact, that are
first-order formulae which condition the values of sets and relations. A model
can also contain assertions, which should hold when the facts are satisfied. The
declaration sig X {r : Y} declares a signature (unary relation) X and a bi-
nary relation r which is a subset of the Cartesian product X x Y. Alloy supports
the usual operations on relations, like union, intersection, difference, join, tran-
sitive closure, domain and range restriction. Fields (relations) of a signature
are accessed using a convenient object-like notation (e.g., z.r =y, with z € X
y €Y, and “.” denotes the relational join operator). Alloy provides a universal
type, noted univ, which is the union of all signatures. Int is the only predefined
type; it is represented by the interval —27~1..27~! — 1, where n is the number
of bits used to store Int values. UML-like cardinality constraints can be defined
on relations. Functions and predicates can be declared.

Alloy specifications can be decomposed into modules. Predefined modules
provide support for booleans, sequences, directed graphs and total orderings on
signatures.

The Alloy tool provides an editor, a model finder/enumerator and a model
viewer based on the dot package. Alloy uses SAT solvers to build models to
verify the satisfiability of axioms (facts) defined in an Alloy specification and
to find counterexamples for assertions which should follow from these axioms.
Only finite models are explored; their size is determined by a scope specified for
each signature. Alloy facts and signatures are translated into Boolean formulas
using Kodkod [3].

2.2. Primer on B

The formal specification language B [I] is based on first-order-logic and set
theory and follows the correct-by-construction approach. B has initially been de-
veloped for the specification and design of software systems. Specific properties
can be proven mathematically using theorem provers, e.g., using AtelierB [13],
or be checked using a model checker such as PrRoB [4], [5] [6].

A formal model in B consists of a collection of machines, containing a high-
level abstract specification which is successively refined and decomposed. The
development in B is thus incremental, which increases the maintainability and
eases the specification of complex models.

A machine consists of variable and type definitions as well as initial values.
A state is defined by the current values of the machine variables. By defining
machine operations, one is able to specify transitions between states, effectively
computing successor states featuring all variables. A machine operation has a
unique name and consists of a B substitution (aka statement) defining the ma-
chine state after its execution. An operation can have a precondition, allowing

or prohibiting execution based on the current state. For instance, a valid ma-
chine operation o is defined by o = PRE x>0 THEN x:=x+1 END using the single
assignment substitution of B. Several variables can be assigned either in parallel
or in sequence.

To ensure a certain behavior, the user can define machine invariants, i.e.,
safety properties that have to hold in every reachable state. Hence, the correct-
ness of a formal model refers to the specified invariants. PROB further supports
linear temporal logic and fairness constraints, which enables the specification
and verification of liveness properties.

In addition to the types explicitly provided by the B language such as
INTEGER or BOOL, one can provide user-defined sets. These sets can be de-
fined by a finite enumeration of distinct elements (the set is then referred to as
an enumerated set) or left open (called deferred sets). For instance, by defining
a set S = {s1} the element s1 is of type S and can be accessed by name within
the machine. Deferred sets are assumed to be non-empty during proof and also
finite for animation.

B is statically and strongly typed while PROB further executes runtime
checks to ensure well-definedness. Type domains can be unbounded, possibly
resulting in a model with an infinite state space. Further, B and PROB have
support for higher-order quantification, in particular, sets and relations can be
nested arbitrarily.

Code generators can be used to derive executable code from B models, tar-
geting traditional programming languages such as C, C++ or Java.

2.8. Comparing Alloy and B

Although Alloy and B share common features, both languages have consid-
erable differences. Most notably, Alloy and B have a different understanding
of states. In B, state changes are encoded by means of operation executions,
leading to successor states featuring all variables. At its heart, Alloy only has a
single constant state, there is no concept of an operation. Alloy, however, allows
defining orderings, allowing one to reason about sequences of states. In contrast
to B, a predicate can then access any state in the sequence, not just the current
state and its immediate successors.

Further, B is strongly typed, while Alloy only enforces the arities of an
operation’s arguments to match and provides the universal type, i.e., the union
of all signatures. On the one hand, strong typing is less error-prone than weak
typing and enables a wide range of code analysis techniques to be applied.
For instance, PROB throws a well-definedness error if a sequence operation is
called on an improper sequence, whereas this is permitted in Alloy (but might
not always be desired). On the other hand, strong typing possibly hinders a
concise and idiomatic specification of software systems, especially in the context
of object-oriented programming languages.

In B, tuples are encoded as nested pairs. Thus, several encodings of tuples
exist and the modeler has to know which one is being used. For example, a triple
can be represented as either (z — (y — 2)) or ((z — y) — z). In Alloy, tuples

N O U WN -

Listing 1: Own Grandpa (Alloy - Signatures)

module SelfGrandpas
abstract sig Person {

father : lone Man,

mother : lone Woman
}
sig Man extends Person { wife : lone Woman }
sig Woman extends Person { husband : lone Man }

are flat. This makes the join operator of Alloy powerful and enables expressing
certain constructs more concisely than is possible in B.

Alloy follows the small scope hypothesis, which states that most bugs can
be found by testing a program within a small scope [15], and bounds every
domain. Hence, the Alloy Analyzer is not able to generally prove properties
for a model but show the absence of counterexamples within a restricted scope.
In contrast, domains can be unbounded in B. Besides using AtelierB’s theorem
provers, symbolic model checking techniques of PROB can be used to verify
properties on infinite state spaces [33].

B and PrROB have support for higher-order quantification, in particular,
sets and relations can be nested arbitrarily. Higher-order specifications are also
expressible in Alloy but cannot be handled by the Alloy Analyzer (an error is
thrown). Alloy* [I6] is an extension of Alloy which is able to do so.

3. Translation Example

In the following section, we will introduce our translation on a simple Alloy
model taken from Chapter 4 in “Software Abstractions: Logic, Language, and
Analysis” [2]. The model is given in Listing [I| and Listing [3| the translation
is given in Listing [2] and Listing [} Our translation will only use the following
concepts of a B machine:

1. Deferred sets, introducing new types for Alloy signatures in the SETS
clause.

2. Constants, introduced in the CONSTANTS clause.

3. Predicates about the constants and deferred sets defined in the PROPERTIES
clause. This includes typing predicates for the constants.

4. DEFINITIONS, aka B macros, to ease translating certain Alloy concepts.

5. B Operations for Alloy assertion checks.

In particular, our translation does not use variables, invariants or assertions.

8.1. Translating Signatures

We first concentrate on the translation of Alloy’s signatures and fields in
Listing [I| to B types. An overview of the signatures and fields can be found in

Figure

00O~ O Ui W

Listing 2: Own Grandpa (B - Signatures)

MACHINE SelfGrandpas
SETS
Person
CONSTANTS
Man, Woman, father, mother, wife, husband
PROPERTIES
father € Person + Man A
mother € Person -+ Woman A
Man C Person A
wife € Man -+ Woman A
Woman C Person A
husband € Woman -+ Man A
Man N Woman = & A

Man U Woman = Person
END
mother father
Alloy: B Translation:
4 Person
abstract sig Person { father €EPerson +Man A
father : lone Man, husband mother EPerson +Woman A
mother : lone Woman — D Man cPerson A
- s p (wife EMan »Woman A
sig Man extends Person Woman < Person A
wife : lone Woman T wife—— husband €Woman +Man A
) Man nWoman =@ A
sig Woman extends Person { Man uWoman =Person
husband : lone Man =
}

Figure 1: Signatures and Fields in the Own Grandpa Model

In order to translate the Alloy module SelfGrandpas, we create a B machine
with the same name. Inside, the basic signature Person, defined in line 2 of
the Alloy model, is represented as a user-given set in line 3 of the B machine
in Listing [2] For the sake of readability, the example translation uses the same
identifiers as the Alloy module. Of course, one has to ensure the translation is
valid, e.g., identifiers do not collide with B’s keywords. Deferred sets in B can
have any size, just like signatures in Alloy. In Section we show how a limit
on the size of the signature is translated.

The signature features two fields, father and mother, each representing a
relation of members of Person to members of Man and Woman. The keyword
lone states that the relation is in fact a partial function, i.e., a 1-to-at-most-1
mapping. This can be encoded into B using a partial function, as created by
the + operator in lines 7 and 8 of Listing [2]

The extending signatures Man and Woman are subsets of Person. As user-
given sets in B are distinct, we introduce constants Man and Woman and assert
the subset property in lines 9 and 11 of Listing[2] As above, the fields wife and
husband are translated into partial functions in lines 10 and 12.

Since Person was declared abstract, two additional properties have to hold

00O~ O Ui W

Listing 3: Own Grandpa (Alloy - Facts and Predicates)

fact Terminology { wife = “husband }
fact SocialConvention {
no wife & *(mother + father) .mother
no husband & *(mother + father).father
}
fact Biology {
no p : Person | p in p.~(mother + father)
}
fun grandpas[p : Person] : set Person {
let parent = mother + father + father.wife + mother.husband
| p.parent.parent & Man
}
pred ownGrandpalm : Man]l {
m in grandpas[m]
}

run ownGrandpa for 4 Person

for the sub-signatures: each element of Person has to be in one of the sub-
signatures and the two sub-signatures have to be disjoint. This partitioning of
Person is encoded in B’s set theory in lines 13 and 14 of Listing

8.2. Translating Facts and Predicates

Alloy facts are added to the B machine’s PROPERTIES clause. For example,
the Alloy fact Terminology of Listing [3 stating that wife is the inverse of
husband, can be encoded in B using the relational inverse, see line 11 of Listing[4]

The first fact in SocialConvention states that your wife cannot be your
mother or the mother of your ancestors. The second fact asserts the same
property for husband and father. Both can be translated directly as far as set
union, intersection and closure computation are concerned. The dot join in this
case is interpreted as the relational composition of the two relations, which is
available in B by using the ; operator. Other interpretations of the dot join
operator will be discussed later. The keyword no enforcing the emptiness of a
set is translated to equalities to the empty set in lines 12 and 13.

The Alloy fact Biology, stating that nobody can be their own ancestor,
introduces a quantified local variable p. Again, no enforces emptiness of the
set. We translate the fact into a negated existential quantification, which is able
to introduce the variable. Observe, that quantification in Alloy is over singleton
sets only. More generally, we translate the quantification no p : S | P into
—3p.({p} C S AP).

The function definition grandpas and the predicate definition ownGrandpa,
both with a parameter, are encoded as B definitions, permitting their reuse
throughout the model. The predicate definition ownGrandpa only includes the
application of grandpas as well as a membership check and can thus be trans-
lated directly.

00O~ O Ui W

el e e e el
© 00O U W~ OO

Listing 4: Own Grandpa (B - Facts and Predicates)

MACHINE SelfGrandpas

DEFINITIONS

parent == mother U father U
(father ; wife) U (mother ; husband);
ownGrandpa(m) == {m} C Man A ({m} C grandpas(m));
grandpas (p) == {tmp | {p} C Person A
tmp € (parent[parent[{p}]] N Man)}
PROPERTIES
wife = husband™! A

wife N (closure((mother U father)) ; mother) = @ A
husband N (closure ((mother U father)) ; father) = @ A
not (Ip. ({p} C Person A
{p} C closurel ((mother U father)) [{p}])) A
card(Person) < 4
OPERATIONS
run_ownGrandpa = PRE dm.(ownGrandpa(m)) THEN skip END
END

Translating grandpas however is not straightforward, as it includes a let
expression, which is not available in BE| As an alternative to inlining, we again
create a definition named parent in order to hold the value of the newly intro-
duced variable. Note that this changes the scope in which the variable resides
and might make renaming necessary in order to avoid conflicts. Furthermore,
observe that there are no free variables in the definition of parent. Otherwise,
those would be passed to the B definition as parameters. As grandpas returns
a set of Persons, the definition again uses a set comprehension.

4. Formal Description of the Translation

The original paper by Daniel Jackson [I7] (notably Figure 2) as well as Ap-
pendix C in “Software Abstractions: Logic, Language and Analysis” [2] provide
a semantics of the kernel of Alloy in terms of logical and set-theoretic operators.
It introduces a function M to give the meaning of formulas (aka predicates) and
a function E that gives the meaning of expressions. One of the rules defined by
Jackson [2] gives the meaning of the + operator as the set-theoretic union of
the meaning of its arguments:

e E[p+qli = E[p]iv E[q]i

The argument ¢ is an environment where some identifiers can be given a value.
The environment is used to deal with quantifiers and identifiers: quantifiers
update the environment, while the function is applied when computing the
meaning of an identifier r as follows: E[r]i = i(r).

ILet expressions are available in an extended version of B understood by ProB.

Our translation rules are an alternate specification of this semantics, using
the B operators and also using B quantification. Our translation rules are more
comprehensive and sometimes more involved due to the following reasons:

e The B language has a more restrictive syntax concerning set comprehen-
sions and always requires explicit quantification of all introduced iden-
tifiers, in contrast to the “flexible” mathematical notation employed by
Jackson [2, [17].

e In Alloy tuples are flat and Cartesian product is associative; in B Cartesian
product is not associative and tuples are represented as nested pairs.

e We have to provide the full translation for all operators. (Jackson [2], [17]
presents the kernel semantics and only a few translation rules for the full
language to the kernel language.)

e The translation by Jackson [2, 17] does not specify all aspects of encoding
signatures, which we have to deal with in an automated translation.

4.1. Overview of the Semantic Functions

We provide four semantic functions, one for expressions, one for predicates,
and two for declarations that introduce new quantified variables.

Each semantic function has an argument ¢ which is an environment storing
different information to be used during translation. In particular, the informa-
tion is used for optimization as it allows using more specialized encodings in
certain situation. For instance, the environment stores identifiers that are sin-
gleton sets. Thus, if « € ¢, then z is translated as {z}, whereas identifiers not
in ¢ are translated as x. This information is relevant to obtain a more effective
encoding into B, using scalar values instead of set values whenever possible.
Note that, as we translate Alloy quantification to B quantification, there is no
need to store values for the quantified variables as in the functions defined by
Jackson [2] [I7]. However, we also store information about identifiers which are
known to be total functions in i. We are then able to translate specific Alloy
constructs in a more idiomatic and, in terms of solving constraints, more efficient
way. For instance, when using total functions, we can translate element access
using B’s function application instead of using the relational image operator.

For the sake of readability and brevity, our translation rules will only de-
tail how identifiers representing singleton sets are tracked. Identifiers for total
functions are tracked similarly.

In particular, we provide the following semantic functions:

1. E[A]i is the B encoding of the Alloy expression A given the environment
1.

2. MJA]i is the B encoding of the Alloy predicate A given the environment

1.

3. D[A]s is the B encoding of the Alloy quantification declaration A given

the environment ¢. I[AJé is the updated set of identifiers after processing

the declaration A.

4. F[A]i is the B encoding of the Alloy signature field declaration A
given the environment .

4.2. Example
Before presenting the rules in detail, we process a small sub-predicate from
Section

no wife & *(mother + father).mother
To translate this Alloy predicate to B we need the following semantic rules:
e M[noplli = Ep]i=o
Elp & qli = E[plin Elqg]i
Elp +qli = E[p]iU Elq]i

E[z]i = =z for identifiers not occurring in 4 (e.g., signature names and
fields)

E[*p]i = closure(E[p]i)
Elp.q]i = (E[pli; Eq]i) if both p and ¢ are binary relations

Note that closure is B’s transitive and reflexive closure operator on relations,
while “;” is the relational composition operator.
Here is a step-by-step application of these rules to obtain the B translation,

where ¢ = @.

1. M[no wife & *(mother + father).mother]i

E[wife & *(mother + father) .mother]i = &
Efwife]i N E[*(mother + father) .mother]i = &

wife N (E[*(mother + father)]i ; F[mother]i) = &
wife N (closure(E](mother + father)]i) ; mother) = &
wife N (closure(F[mother]i U E[father]i) ; mother) = &
wife N (closure(mother U father) ; mother) = &

RN

4.3. Signature and Field Declarations

Since a signature declaration can be quite complex, let us start with the
simplest one, omitting everything optional, i.e., we only add a named signature
to the model. A signature has the properties of a set, containing atoms of the
signature’s type. For the translation to B, we will create a new deferred set for
each signature. In B, a deferred set introduces a user-defined type as a finite
and non-empty set.

Additionally, a signature can extend another signature by making use of
either the in or the extends keyword. In this case, we set up a subset of an
already existing set, i.e., for each sub-signature s extending base signature s,
we define a constant s and add s C s, to the PROPERTIES clause.

10

For the extends keyword, we ensure that extending signatures are pairwise
disjoint by adding s; N sy = @ for each combination of extending signatures
$1, 82, with s1 # s9, to the B machine’s PROPERTIES clause.

Next, base signatures can be declared as abstract: Abstract signatures are
used for the sole purpose of being extended by other signatures. They do not
contain elements which are not also elements of other sets [2]. In B, this property
can be modeled by adding the following constraint to the PROPERTIES section:

Sp = U S.

s extends sy

Alloy allows stating the cardinality of signatures using multiplicities. The
quantifiers lone (at most one) and some (at least one) are translated straight-
forwardly using cardinality constraints in the B machine’s PROPERTIES section.
In case of one (exactly one), we define a signature as a singleton enumerated
set in B instead of a deferred set.

An Alloy signature may contain a list of fields, i.e., relations defined over
the signature’s elements. Since B natively supports relations, the translation is
straightforward: for a signature S with fields fs ;, each mapping an element of
S to S;, we add a constant fg; and state that fg ; is a relation between S and
S; by the B constraint fs; € S+ 5;.

We have to ensure that the names of the constants fs ; are unique in terms
of the current model since fields of different signatures can have the same name
in Alloy. Otherwise, the resulting B machine might not be well-defined because
of clashes between constants with the same name but different types.

It is also possible to make use of quantifiers when declaring field variables:
In this way we can decide on the number of elements that are mapped to.
The default quantification for relations in Alloy is a mapping (Alloy quantifier
one) while in B it is an 1-to-n mapping (Alloy quantifier set). Therefore, if no
quantifier is given in the Alloy model, the translation to B has to be adapted,
i.e., we add the constraint fg; € § — S;, stating that fs; is a total function.
The translation of the quantifier lone results in a partial function. In case
of set, no additional property is needed, since it is the default of B. For the
multiplicity some, we add the additional constraint dom(fs ;) = S, i.e., the
field fs ; is a total relation.

Furthermore, a signature’s field can be defined as a sequence of atoms. We
translate a sequence g as a partial function with a finite and coherent domain
0..card(q) — 1 and ensure that the maximum allowed length of sequences m € N
is not exceeded. As a signature can have several instances, the complete domain
of a signature field that is a sequence is defined as the Cartesian product of the
signature and the partial function. We will explain the translation of Alloy
sequences to B more precisely in Section [5.5]

Taken together, the formal translation of field quantifications for an exem-
plary signature S to B machine properties is as follows:

o F[field : set Set]i = field € E[S]i < E[Set]i

11

F[field : one Set]i = field € E[S]i — E[Set]i

F[field : lone Set]i = field € E[S]i + E[Set]i

F[field : some Set]i = field € E[S]i < E[Set]i A dom(field) = E[S]:

F[field : seq Set]i = field € (E[S]i x 0..(m —1)) -+ E[Set]i A
Vs.(s € E[S]i = dom(field)[{s}] = 0.. card(dom(field)[{s}]) — 1)

e F[field : Set]i = F][field : one Set]i

Besides constraining the quantification of signature fields, one can use the
keyword disj in combination with any multiplicity in order to define that dis-
tinct members of a signature yield distinct field values. For instance, the sig-
nature sig S {f : disj e} defines the signature field f to be disjoint for dis-
tinct members of S. This results in the additional constraint all a,b : S |
a!= bimplies no a.f & b.f [2]. We straightforwardly translate the universal
quantification and add it to the translated B machine’s PROPERTIES section.

Alloy allows providing additional constraints on signature elements together
with the signature definition. However, aside of syntactical sugar, they do not
differ from regular constraints stated via fact declarations and are thus not
considered further in this section.

4.4. Universe and Identity

Alloy features two special constants: univ, referring to the set of all instances
of all signatures and iden, the identity relation over the universe. Neither is
available in B. To translate univ, we could create a top-level set UNIVERSE
and ensure that all base signatures implicitly extend it. This negatively im-
pacts PROB’s solving capabilities: without distinct sets for different signatures,
techniques such as symmetry reduction cannot be applied as efficiently. PROB’s
kernel becomes unable to reason on types and thus has to perform more involved
case distinctions. Further, in case integers are used in an Alloy model, we would
need to create a singleton set for each integer extending the set UNIVERSE al-
though B and PROB have native support for real integers. In consequence, we
only create parent types for specific signatures if necessary.

For instance, if two signatures S1 and S2 have no parent type except for
univ and interact with each other using a union S1 + 52, we introduce an
additional deferred set in the translated B machine and declare membership
for both signatures. The two signatures are then defined as machine constants
rather than deferred sets in B. For above example, this results to S1 N S2 =
@ N S1US2 = P being added to the B machine properties where P is the
introduced parent type, i.e., a deferred set in B.

To do so, we analyze an Alloy model prior to the translation and collect pairs
of signatures that interact with each other and have no parent type except for
univ. All collected pairs are merged to distinct sets of signature types where
in each set at least two signatures interact with each other. When translating
an Alloy model, we define a parent type for each set of signatures. In case all

12

signatures of a model interact with each other, our translation introduces one
parent type for all signatures. Despite containing integers, this type is equal to
Alloy’s universal type given a specific model.

As we use the integer type of B to translate Alloy integers, which cannot be
a subset of a deferred set, we cannot translate interactions between signatures
and integers straightforwardly. To do so, we would need to create a singleton set
for each integer extending the set UNIVERSE in B. To our knowledge, a binary
interaction between a signature type and integers is not needed in any reasonable
Alloy model. However, it is allowed by the Alloy Analyzer’s typechecker.

For binary operations, the translation of univ can be avoided in several
typical use cases, e.g., left and right joins with the universe can be translated
into domain and range computation.

Using UNIVERSE, we could translate iden to id(UNIVERSE). However, as
we want to avoid the universal type as much as possible, we again chose a
more specialized translation. That is, instead of translating into the identity
over the universe, we rely on the Alloy Analyzer’s typechecking information and
translate into a more restricted identity relation if possible without changing the
semantics. For instance, the Alloy expression iden & r, where T is a signature
and r € T+ T, can be translated as id(T) Nr.

However, we do not allow the keywords univ or iden for specific operators
which we cannot translate to an equivalent B expression without introducing
the universal type in B. We instead throw an error and do not translate the
Alloy model to B. In particular, these operators are equality, inequality and
the subset relation in. For instance, consider an Alloy model which defines a
signature sig T { r : set T' } . We translate the signature as described in
Section [£.3] i.e., we introduce a deferred set in B, define the field as a machine
constant, and add E[r]i € E[T]i«> E[T]: to the machine properties. The Alloy
model further defines a basic signature R without any field as well as a global
fact T.r = T, i.e., the signature field r contains all possible elements. When
checking the assertion iden in ('r).r, the Alloy Analyzer finds a counterexample
as the identity relation of the signature R is not part of the dot join’s result. If
following our restricted translation of the keyword iden to B, we would translate
the assertion into a more restricted expression id(E[T]i) € ((E[r]i)~*; E[r]i)
which does not provide a counterexample in B, i.e., the translation would be
semantically non-equivalent. An equivalent behavior in B could be achieved by
introducing the universal type and using id(UNIVERSE) rather than id(E[T7]q).
Yet, we decided to not support the translation of said expressions containing
one of the keywords univ and iden.

4.5. Connectives and Simple Predicates

Let us first look at how to translate Alloy’s logical connectives. This part is
very straightforward, as they have matching counterparts in B.

e Mpand ¢]i = Mp]i A M[q]i
e M[porq]i = M[pliVv M[q]i

13

e M|p implies ¢]i = M][p]i = M[q]i

o M[p equiv ¢q]i = M(pli < Mq]i

e M[not p]i = —~M][p]i

Similarly, equality and inequality in Alloy and B are identical:
o Mlp=gqi = E[pli = E[q]i

o Mp '=qli = E[pli # Elq]i

The following unary expressions can be used to constrain a set’s cardinality:
e M[noplli = Epli=2

e M[one p]i = card(E[p]i) =1

e M[some pi = card(E[p]i) >0

e M{lone p]i = card(E[p]i) <1

Now, to translate the in predicate, it is important to understand that Alloy
only operates on set values. This means, that it is translated using the B C
predicate, and not the € predicate.

e Mlpingq]i = E[pli € Elq]i

4.6. Simple Expressions

First, we need to translate simple identifiers not occurring in the environ-
ment i, e.g., signature names and fields. In general, identifiers are simply kept
as they are. In the presence of modules and namespaces, identifiers have the
module names prefixed to avoid ambiguity. This is already handled by the Al-
loy Analyzer’s parser and typechecker we use as a frontend as we will outline in
Section [6] where we give technical details on the implementation.

e Efz]i = =z for identifiers x not occurring in i

In the following, we present simple translation rules, where one Alloy oper-
ator gets translated to a B operator or constant:

o Enone]i = o

Elp + qli = Elp]iv E[q]i
Elp & qli = E[p]in Elq]i
Elp - qfi = E[p]i\ Elq]i
E[pli = (E[p]i)~*

E[p]i 2 closurel(E[p]i)

e o o
1

14

e E[*p]i = closure(E[p]i)
e Elp ++ q]i = E[p]i < E[q]i

Note that the Alloy operators 7, ~ and * are only allowed for binary relations.
Hence, we can translate them to the B counterparts. However, other Alloy
operators also work for relations of higher arity. As such we can encounter
not just ordered pairs but tuples, whose translation we discuss in the next
subsection.

As discussed in the introductory example in Section [3] classical B does not
feature a let expression. This can either be resolved by using a definition as
done in the example, inlining, or by using the extended version of B understood
by PROB. In our current translation we use the let expression provided by
PrOB. Of course, a model can then not be processed by other tools like AtelierB
anymore. To do so, PROB provides a pretty-printer which rewrites B abstract
syntax trees to native B as, for instance, understood by AtelierB.

4.7. Representing Tuples

In Alloy tuples are flat and Cartesian product is associative. In B Cartesian
product is not associative and tuples are represented as nested pairs. Hence,
in B (e; — e3) — e3 is a different value and has a different type than e; —
(e2 — e3). Which encoding should we use for an Alloy triple (e1, ea, e3) within
a ternary relation r? Both have their advantages and drawbacks, concerning
the use of the B operators such as domain, range, relational image or function
application. The B language also provides a comma notation for pairs, whose
associativity corresponds to the first alternative:

° (61,62,63) = (61 — 62) — e3

We have finally chosen to use the first alternative, as it allows us to write
set comprehensions of the form {xi,...,x, | P} to generate n-ary relations of
the right type.

Another alternative would have been to allow all variations in our transla-
tion, keeping track in the type system which associativity has been generated.
It is not clear whether this is worthwhile and it definitely makes the translation
rules much more complex.

4.8. Cartesian Product

Due to the difference in the treatment of tuples, the Cartesian product in
Alloy can also behave differently than in B. When the second argument is a
unary relation, we can reuse the B Cartesian product, otherwise we need to
compute it using a set comprehension.

For example, the following B Cartesian product between a ternary and a
unary relation works correctly:

e {(1—=2)—=3}x{4} ={((1—2)—3)—4}

15

However, for a ternary and binary relation it does not work, as the pairs in the
result are incorrectly nested:

e {(1—2)—3}x{4—5)}={(1—2)—3)— 4d~—05)}
Using a set comprehension we can compute the correct result:

o {t,ql,q2 |t € {(1—2)— 3} A(ql,q2) € {(4 — 5)}} gives us a correctly
encoded tuple: {(((1+ 2)— 3) — 4) — 5}

This leads to the two following rules:
e Elp ->q]i = E[p]i x E[q]i if ¢ is a unary relation

e Elp->4qli = {t,q1,....qn |t € E[p]i A (q1,.--,qn) € E[q]i} if ¢ is an
n-ary relation with n > 1.

4.9. Domain and Range Restriction

The domain restriction can be translated as follows. For binary relations ¢
we can reuse the corresponding B operator <, otherwise we need to compute
the result using a set comprehension:

e Ep <: ¢q]i = E[p]i < E[q]i if q is a binary relation

~

e Elp<:qli = {q1,---,qn | 1 € E[pJi A (q1,--.,qn) € E[g]i} if q is an
n-ary relation with n > 2.

For range restriction the corresponding B operator > works for all arities,
since ¢ must be a unary relation in Alloy.

e Elp :>qli = Efp]ir> E[q]i

Yet, there are some special cases for domain and range restriction with iden
or univ. We thus encode the restriction of the identity relation to the domain
p in B as the binary relation that relates every element of p to itself, while a
domain restriction on univ returns the domain itself. For the identity relation,
the assertion all p : univ | p <: iden = iden :> p holds (analogous for univ).
This shows that both expressions are equivalent, which we represent using the
symbol =, resulting in the following translation to B:

e E[p <:iden]i = E[iden :> pli = \x.(x € E[p]i | x)

I

e E[p <:univ]i = E[univ :> p|i

16

4.10. Join

The dot join p.q, one of the most important operators in Alloy, is also the
most difficult to translate. We have quite a lot of special cases below, trying to
use existing B operators if possible. First are three special cases, where one of
the arguments is the Alloy universe. These operations correspond to computing
the domain and range of the Alloy relations:

e E[p.univ]i = dom(E[p]i) where p is an n-ary relation, n > 2
e Euniv.¢]i = ran(E[q]¢) if ¢ is a binary relation

~

e E[univ.g]i
relation, n > 2

{92,---,qx | 35.((U,q2,-.-,qr) € E[q]i)} if ¢ is an n-ary

Another typical pattern in Alloy is to use the join operator for relational
image or function application. The next three translation rules capture these
patterns:

e Elp.q)i = {F[q]i (pv)} if E[p]i = {pv}, p is a unary relation, ¢ is an
n-ary relation with n > 2, and ¢ is known to be a total function in pv.

e Elp.qli = E|qli [E[p]i] if p is a unary relation, ¢ is a binary relation
e Elpq]i = (E[p]i)~[E[q]i] if ¢ is a unary relation, p is a binary relation

The translation rules above are optional, since the next three translation
rules of the join operator also cover the same cases, but lead to a less idiomatic
B translation. The first one uses B’s relational composition operator:

e Elp.q]i = (E[p]i; E[q]?) if both p and ¢ are binary relations

unary relation

o Elpqli = {t,q2,---,qr | 33.((t,5) € E[pliA (4, q2,---,q) € E[q]i} in all
other cases (i.e., p is an n-ary relation with n > 1 and q is a k-ary relation
with k& > 1).

One can observe that the join operator of Alloy is very elegant and flexible;
together with flat tuples, it provides an expressive construct. One could think
about extending the B relational composition operator to work more flexibly
(i.e., also with sets and n-ary relations). This would also make the translation
to B easier.

Alloy further provides the box join operator y[z] which is just syntactic sugar
for the dot join operation z.y though.

17

4.11. Quantifications, Set Comprehensions and Identifiers
Quantifications in Alloy can introduce a finite set of identifiers using the :
operator for unary sets S:

e D[z :one S]i = {z} C E[S]i

e D[z :set S|i = x C E[S]i

e Dz :some S]i = z CE[S]liNz # o

e D[z :lone SJi = x C E[S]i Acard(z) <1

e D[z : S]i = D[z : one S if the arity of S is 1

e D[z : S]i = M[xz in S]i if the arity of S is greater than 1
e D[xy,...,x:S)i=DJxy : SJiA... ADJag : SJi for k > 1

e D[disj x1,...,2x : SJi = D[y : SJi A ... A D]y : SJi A
card({z1,...,zr}) =k for k> 1

Both Alloy and B feature set comprehensions, consisting of local identifiers
and a constraining predicate. Translation is straightforward, as only the predi-
cate has to be translated according to the rules given above. However, we have
to ensure that unique names are used for the translation of local identifiers to
avoid clashes between identifier names for nested scopes.

We apply a separate function to compute updates to the environment by
identifier declaration, which is defined as follows:

o [z :one S|i = iU{x}
o [[x:m SJi = i— {z} for m # one.
o I[z:S]i = iU {x} if arity of Sis 1, ¢ — {x} otherwise

Given an environment ¢, we translate identifiers to B either as a singleton
set or as a raw identifier:

o Efz]i = {z}if z € (i.e., the environment i states that z is a singleton
set identifier (e.g., quantified variables with multiplicity one)

o Efz]i = xfor x i (i.e., x is a signature name or field)

In the following, x are the left-hand side arguments of the declaration Decl
and i’ = I[Decl]i holds:

e M[some Decl | Plli = Fx.(D[Decl]i A M[P]i)
M]Jall Decl | P]li = Vx.(D[Decl]i = M[P]i)
M(no Decl | P]li = —3z.(D[Decl]i A M[P]i’)

MTJome Decl | P]i = card({z | D[Decl]i N M[P]i'}) =1

MTlone Decl | Plli = card({z | D[Decl]i N M[P]i'}) <1

18

4.12. Conditionals

Alloy provides a conditional statement, which can either be treated as a
predicate or as an expression. We therefore provide the following two translation
rules, one of which uses the if-then-else expression of PROB:

o M[p=>qELSE r]i = (M[p]i = M[q]i) A (~M][p]i = M][r]i)
e E[p=>qELSE r]i = IF M[p]i THEN E[q]i ELSE E[r]i END

Again, PROB is able to rewrite if-then-else expressions to be compatible to
native B as, e.g., understood by AtelierB.

4.18. Fact, Function & Predicate Declaration

Alloy’s fact declaration has an optional name and contains any number of
predicates, which pose additional constraints to be added to the model. We
translate the expressions as described above. The results are conjoined and
added to the PROPERTIES section of the B machine.

Alloy allows declaring functions and predicates for later reuse. As usual, a
function declaration takes a name, a (possibly empty) list of parameters and a
body containing the actual computation. Parameters are scoped and can only
be referred to by the function itself. Furthermore, they are typed as subsets of
an Alloy signature and can again be quantified to constrain the set sizesﬂ

Functions will be listed in the DEFINITIONS section of the B machine if the
machine contains at least one invocation. Each function is translated into a
single B definition with matching parameters, consisting of a set comprehension
wrapping the actual expression in the body to account for the expected return
type. For instance, the function declaration fun f [s : S] : S { body } is
translated into the B definition f(s) == {z | D[s: S]i A x € E[body]i}, where
i’ = I[s : S]i as in Section Syntax and functionality of the predicate
definition is slightly different. For the predicate to evaluate to true or false
instead of computing a value, we omit the set comprehension resulting in a B
predicate. For instance, the predicate declaration pred p [s : S| { body } is
translated into the B definition p(s) == D[s : SJi A M [body]i’.

Again, we have to ensure that unique names are used for the translation
of local identifiers in order to avoid clashes between identifier names in B for
nested scopes.

Note that PROB inlines definitions to the positions where they are used,
which basically is a text replacement. When loading a B machine in PROB, the
machine’s DEFINITIONS section is thus not present anymore.

2Quantifiers are used for typing but do not enforce restrictions on possible models.

19

4.14. Assertion Declaration and Run & Check Commands

In Alloy, assertions can be stated using the assert declaration. An assertion
does not immediately enforce further constraints. Rather, it can later be verified
or falsified in a given variable scope, using the run and check commands. To
do so, assertions are named and contain any number of predicates to be checked.
For instance, assert a { } is a named but empty assertion that is always true.

The run command instructs the Alloy Analyzer to search for variable states
that satisfy the model’s constraints. It can either refer to a named predicate
introduced by one of the declarations above or include an explicit Alloy pred-
icate. The check command is used to check an assertion by searching for a
counterexample.

We introduce an operation to the B machine for each run command having
the translated instructions of the command as its precondition. The operation’s
substitution is a skip, i.e., we only test if the operation can be executed with-
out any effect on the model. If the translated model satisfies the predicate to
be checked, its specific operation is enabled. In case of a check command, we
proceed analogously but negate the command’s instructions within the precon-
dition in order to search for a counterexample. That is, the operation is enabled
if a counterexample exists.

Together with the predicate to be checked, both run and check include a
scope used to control the search space. By default, the scope defines an upper
bound for the cardinality of a signature. The size can be set to a fixed value by
using the keyword exactly. We define the translated scope in the precondition
of the corresponding operation. For instance, the command run p for 3 S,
for a predicate p and an unordered signature .S, translates to an operation
run = PRE card(E[S]i) < 3 A M[p]i THEN skip END in B. In case of a
check command, the only difference in the translation is to use =M [p]s.

The Alloy keywords Int and seq can be used to specify the bitwidth used
to represent integers and the maximum allowed length of sequences.

To execute an Alloy command with PROB one can, e.g., use constraint-based
checking as will be explained in Section [6] In short, constraint-based checking
searches for a variable state that satisfies the precondition of an operation con-
sidering the machine’s properties.

Given that the proof assistants for classical B do not require scopes we
also support translating commands without scopes, which can be set via a user
preference in PROB. While the resulting B machine does not mimic the Al-
loy model’s behavior exactly, it allows for a more general proof, following the
approach we will show in Section B3]

4.15. Multiplicity Annotations

Alloy supports the multiplicity annotations some, one, lone and set. If no
multiplicity is given, the default multiplicity set is used.

When translating multiplicity annotations, the semantics are no longer de-
notational. The predicate M[x in A -> one B]i cannot be encoded as Efz]i C
E[A -> one BJi, because the property of being a total function is not a closed
subset. Hence, we translate the multiplicity annotations as follows:

20

o Mz in A -> B]i = E[a]i € E[A]i « E[B]i
o M[z in A->some B]i = E[a]i € E[A]i+>E[B]irdom(E[z]i) = E[A]i
o M[z in A > one B]i = E[z]i € E[A]i — E[B];
o M[z in A ->lone B]i = E[z]i € E[A]i + E[B]i
o M[z in Asome -> B]i = E[x]i € E[A]i<> E[BliAran(E[z]i) = E[B]i

e M[x in some A ->some Bli = E[z]i € E[A]i+> E[B]iAdom(E[x]i) =
E[A]i Aran(E[x]i) = E[B]i

o M[x in some A ->lone B]i = E[x]i € E[A]i + E[B]i

e M|z in some A -> one B]i = E[z]i € E[A]i » E[B]s

e M[z in lone A -> B]i = (E[z]i)~! € E[B]i+ E[A]i

e M[z in lone A -> some B]i = (E[z]i)~! € E[B]i + E[A]i
e M[x in lone A ->lone B]i = E[z]i € E[A]i ~ E[B]i

o Mz in lone A -> one Bli = E[a]i € E[A}i — E[B]i

e M[z in one A -> B]i = (E[z]i)~! € E[B]i — E[A]:

e M[x in one A -> some B]i = (E[z]i)~! € E[B]i — E[A]i
e M|z in one A ->lone B]i = FE[z]i € E[A]i ~ E[B]:

e M[x in one A -> one Bli = E][z]i € E[A]i — E[B]:

Note that B does not provide operators for each multiplicity annotation that
are equivalent to Alloy’s definition, e.g., there is no operator to directly define a
total relation in B. We thus translate the corresponding multiplicity annotations
to B as relations and add additional constraints.

While PROB supports the translated predicates as typing predicates, Ate-
lierB does not support directly typing the inverse as done, for instance, in
M[z in lone A -> B]i = (E[z]i)~! € E[B]i+ E[A]i. Instead, one has to
type the relation itself and add any restrictions on the inverse as additional con-
straints, e.g., M[z in lone A -> B]i = E[xz]i € E[A]i<+ E[B]in(E[z]i)~! €
E[B]i + E[A]s.

4.16. Post-Processing Optimization Rules

As our translation has to be generalized and applicable to all possible Alloy
constructs, some translations might not be ideal for the PROB constraint solver,
especially when using singleton sets. For instance, our translation might define
an identifier to be an element of a specific set like x € S. Yet, if this set is
a singleton set S = {y}, the membership relation can be replaced by a simple
equality z = y.

21

In order to improve performance, PROB provides many rules to improve
the representation of abstract syntax trees prior to solving constraints, which is
referred to as an abstract syntax tree cleanup. In the following, we present the
additional rewriting rules that arose during the implementation of the transla-
tion from Alloy to B mostly caused by the use of singleton sets:

o {a}={yt~a=y
{a} #{yt ~ 2 #y
ve{yt~r=y

v {yt ~a#y
{z}C{yt ~ 2=y
{e}n{yt=a~a#ty
{z} = {y} ~ {2 —y}

5. Translation of Alloy Extensions

Alloy provides several language extensions, for instance, supporting integers
or additional constraints for certain types. As the modules are specified in
Alloy, we could directly translate them as well. Yet, we aim to provide an
idiomatic and more efficient translation to B for each module. The translation
of boolean operations such as Nand is trivial and implemented using B’s logical
operators. In the following, we present the translation of the extensions we
currently support besides boolean operations.

5.1. Integers and Natural Numbers

An integer expression in Alloy is a set, just like any other expression. In order
to deal with operators that expects a scalar value, Alloy first evaluates the sum
of the elements of a set of integers before applying an operator. For instance,
given s = {x : Int | x=1 or x=2}, the first operand in the alloy expression
minus[s,4] evaluates to 3, so the result is -1. Similarly, the predicate 3 > s
returns false. Empty sets are evaluated to 0.

Since Alloy encodes constraints to SAT, each Alloy command defines a
bitwidth n used to store integers, i.e., the range —27~1..27~! — 1 with one bit
being used to represent the sign. Consequently, integer overflows might occur
and the Alloy Analyzer may return a model which is invalid outside the given
scope. For example, a model might satisfy plus[5,3] = -8 with a bitwidth of
4. Tt is also possible to divide by zero. An option of the Alloy analyzer can be
set to exclude models that entail an overflow or division by 0. However, this
slows down the analysis process. Thus, when a modeler presumes that a model
does not overflow, this option is usually set to off for efficiency reasons, but
there is the risk that an overflow goes undetected. Since B has native support
for full integers, overflows do not occur.

22

Although well-defined, the semantics of integers in Alloy is somewhat un-
natural. For instance, accepting non-singleton sets as arguments of integer
operations is error prone and might not always be desired. As overflows are a
stumbling block in the use of integers in Alloy, we do not want to replicate this
behavior by introducing a bitwidth in B. However, we provide a PROB prefer-
ence to translate into bounded integers without overflows using PROB’s settings
for MININT and MAXINT. Further, we do not want to allow dividing by zero but
throw a well-definedness error instead.

For the translation of integer operations, we use an additional semantic
function Fy,¢[.]¢ that transforms a set of integers into a scalar expression. It
uses the ¥ operator of B which returns the sum of the elements of a set of
integers or 0 if the set is empty. For instance, 3(z).(z € 1.4 | z) returns 10.

As mentioned above, we believe that accepting non-singleton sets as argu-
ments of integer operations is error prone. We thus decided to provide a PROB
preference which enables a strict translation of integers, i.e., only accept sin-
gleton sets where integers are expected. This preference is set by default. To
do so, we use the definite description operator, noted MU, which is defined as
follows:

MU (z) = ({TRUE} x x)(TRUE)

For instance, MU ({1}) returns 1. Since the operator uses B’s function applica-
tion, the MU operator has the well-definedness condition that its argument x
is a singleton set. Otherwise, the function application would be undefined for
empty sets or ambiguous for non-singleton sets. MU does not exist in the B
notation, but is supported by PROB.

Let Nr be an integer constant. We have the following four rules for the
semantic function E;,.[.]Jé:

o~

o E;[Nr]i = E[Nr]i for integer constants Nr
o Ein:[p]li = Nrif Eplli = {Nr}

o Eiufpli = MU(E[p]:) if PROB preference for a strict integer translation
is set

o Einip]i = X(2).(z € E[p]i | z) otherwise

Note that the first two rules of Fj,:[.]i are in principle redundant, they
“only” improve the performance of the translation (avoiding unnecessary ¥ or
MU constructs).

Using this definition the integer operations are translated as follows:

E[Nr]i = {Nr} for integer constants Nr
El#pli = {card(E[p]i)}

Elmin[p]]i = {min(E[p]i)}
E[maz[p]]i = {max(E[p]i)}

23

o Epluslp,qlli = {Eini[pli + Eine[q]i}
o E[mullp,qli = {Ein:pli * Ein[a]i}

o E[minusp,q)li = {Ein[pli — Einq]i}
o E[divlp,q)li = {Eim:pli/Ein[a]i}

o Efrem[p,q]]i = {Ein:[p]i mod Ein:[q]i}
(currently only works for positive numbers)

o Elnegate[p]]i = {—Eine[p]i}

o Mleglp,qlli = Eint[pli = Eint[q]i
o M[gtlp.qlli = Eint[p]i > Eine[qli
o M[itlp,ql]i = Einelpli < Eine[ql

o Mlgtelp,ql]i = Eine[pli > Einilq]i
o Mlite[p,qlli = Eine[pli < Eint[q]i
o MJzerolp]]i = Eint[p]i =0

o Mfpos[plli = Ein[p]i >0

o Mneg[pl]i = Eint[p]i <0

e M[nonpos[p]]i = Eint[p]i <0

o M[nonneg[p]]i = Eint[p]i >0

o E[signum(p]]i = IF E;[p]i <0 THEN —1
ELSE IF E;,:[p]i > 0 THEN 1 ELSE 0 END END

o Elnext]i = succ

e Eprev]i = pred

o Elnest]p]li = E[p.nest]i

o Elprevlp]]i £ E[p.previ

o Elnests|pl]i = {x |z € ZAx > Eimi[p]i}

o Elprevs]pl]i = {z|z € Z Az < Eime[p]i}

e Ellarger(p,ql]i = {max({Ein:[p]i, Eine[ali})}
o Elsmaller[p,q]]i = {min({Ein:[p]i, Eine[q]i})}
o E[min]i = MININT

e E[maz]i = MAXINT

24

Note that MININT and MAXINT are user preferences of PROB. Further, we do
not consider Alloy’s bitwidth for the translation of nexts and prevs but return
unbounded sets of integers.

The definitions of division and modulo differ slightly between Alloy and B.
B uses a floored division [? |. More precisely, the definition of division in B [I]
is n/m = min({z|x € Z An < m *succ(x)}). Furthermore, in B, x mod y is
only defined if x is non-negative and y is positive.

In contrast, the definition used by Alloy permits both cases. Alloy’s division
rounds towards zero in general, but permits a number of special cases. According
to comments in the Alloy utility module util/integer, there are three exceptions
to the “round to zero” definition of a/b. First, if a = 0, the division returns zero.
Second, if a < 0 A b = 0, the division returns 1; if a > 0 A b = 0 it returns -1.

Last, if a is the smallest negative integer and b = —1, the division returns a.
The different definitions of division and modulo [? | can easily be expressed
in B by rewriting them to B’s floored division [? |. However, as mentioned
above, we do not want to completely reproduce the behavior of Alloy regarding
integers.

The translation of operations on natural numbers as defined in the Alloy
utility module util/ naturaﬂ is analogous to integers but considering the con-
dition to be a positive integer. PROB does not implement any special operations
for natural numbers.

5.2. Relations

Alloy provides a module for common operations and constraints on binary
relations. We translate the relational operations as follows where r is a binary
relation with domain d and codomain c:

o E[dom[r]}i = dom(E[r]i)

o Elranlr])i = ran(E[r]i)

o M[totallr,d|]i = Vz.(zx € E[d]i = E[r]i[{z}] # @)

o M[functionallr,d)]i = Vz.(x € E[d]i = card(E[r]i[{z}]) < 1)
o M[function[r,d|]i = Vz.(x € E[d]i = card(E[r]i[{z}]) = 1)

o M[injective[r,d]i = Vy.(y € E[c]i = card((E[r]i)~*[{y}]) < 1)
o M[surjectivelr, i = Vy.(y € E[]i = (E[rli) " [{y}] # 2)

o Mbijectivelr,c]]i = Vy.(y € E[c]i = card((E[r]i)"'[{y}]) = 1)
o M[bijection|r,d,c]]i = M[function|r,d]]i A M[bijective[r, c]]i
o M[reflezivelr,s|]i = id(s) C E[r]i

3See http://alloytools.org/quickguide/util.html

25

http://alloytools.org/quickguide/util.html

o Mirreflezive[r][i = id(dom(E[r]i)) N E[r]i = @
o M[symmetric[r]]i = (E[r]i)~" € E[r]i

o M[antisymmetriclr]]i = ((E[r]i)~" N E[r]i) C id(dom(E[r]3))
o Mtransitivelr]]i = (E[r]i ; E[r]i) C E[r]i

o Macyclic[r,s]]i = Va.(z € E[s]i = — z & closurel(E[r]i))

o M[completelr,s]]i = Y(z,y).(x € E[s]i Ny € E[s]i A
r#y=az—yc (E[r]iu(E[r]i)~1))

o M[preorder|r,s]]i = Mrefleive|r, s|]i A M[transitive|r]]i
o Mequivalencelr,s|]i = M[preorder[r, s]]i A M[symmetric[r]]i

o M[partialOrder|r,s|]i = M[preorder|r,s|Ji A M[antisymmetric[r]]i
o MtotalOrder[r,s]li = M[partialOrder[r, s|]i A M[complete[r, s]]i

5.8. Orderings

Alloy data types are universally based on relations. For instance, sets are
unary relations while scalars are singleton sets. Signatures are not ordered by
default. Yet, Alloy allows declaring a total order on signature elements by defin-
ing a signature to be ordered, and offers several operations for element access
on ordered signatures. For instance, for an ordered Signature S,, S,/nexts(s)
returns the set of all successors of s € S,,.

Initially, we translated ordered signatures to B sequences. Sequences are
ordered sets of pairs whose domains are finite and coherent sets 1..n, where
n € N is the number of elements. Usually, we translate an Alloy signature to a
deferred set in B having the same name as described in Section An ordered
signature S, can then be represented by a sequence of type S,, i.e., a set of pairs
of integer and S,. B directly offers most of the operations on ordered signatures
while others can be implemented using set comprehensions.

However, PROB’s performance on predicates involving sequences can be lack-
ing when compared to (sets of) integers. In consequence, we switched to a dif-
ferent translation: The scope of a signature is defined within the run or check
statement of an Alloy model. Assuming the ordered signature S, has size k € N,
we translate it to an interval s..(s +k — 1), s € N, in B. The offset s is used
to take into account that ordered signatures can interact, e.g., when computing
the union. We thus ensure that ordered signatures are distinct by translating
them into disjoint intervals.

Besides that, ordered signatures might interact with unordered ones in Alloy.
We then have to define the unordered signature as a set of integer as well to avoid
type errors in B. To do so, we check an Alloy model for interactions between
ordered and unordered signatures prior to the translation.

We expect the input values of operations on orderings to be singleton integer
sets or empty sets. When using integer intervals, the operations first and last

26

can be translated using min and max wrapped in a singleton set. For an ordered
signature S,, we define S, /next and S, /prev using the successor and predecessor
relations of B. The operations S, /nexts[e] and S, /prevs|e] are translated using
set comprehensions.

We noticed that the relational operations on orderings like S, /lt[el, e2] al-
ways return true if the left-hand side is an empty set. If the left-hand side
is non-empty and the right-hand side is an empty set on the other hand, the
relational operators always return false. In the remaining cases, the relational
operators behave as expected from real integers.

In particular, we translate the operations on an ordered signature S, in Alloy
as follows:

e E[S,]i = m.n, where m is the lower and n the upper bound of the
corresponding integer domain

o E[S,/first]i
o E[S,/last]i = IF E[S,]i # @ THEN {max(E[S,]i)} ELSE @ END

IF E[S,]i # @ THEN {min(E[S,]i)} ELSE @ END

o E[S,/min[es]]i = IF E[S,]i # @ THEN {min(E[es]i)} ELSE @ END
o E[S,/maz[es]]i = IF E[S,]i # @ THEN {max(E[es]i)} ELSE @ END

o E[S,/nexte]]i = IF succ[E[e]i] C E[S,]i THEN succ[E[e]]
ELSE @ END

o E[S,/nexts[e]]i = {z |z € E[So]i Amin({z} U E[e]i) # z}

o E[S,/prev[e]]i = IF pred[E[e]i] C E[S,]i THEN pred[E[e]i]
ELSE @ END

o E[S,/prevs[e]]i = {z |z € E[S,]i Amax({z} U E[e]i) # x}

o E[S,/larger[el,e2]]i = IF Efel]iU E[e2]i # @ THEN
{max(E[e1]iU E[e2]i)} ELSE @& END

e E[S,/smaller[el,e2]]i = IF E[el]iU E[e2]i # @ THEN
{min(E[e1]i U E[e2]i)} ELSE @ END

o M[S,/lt[el,e2]]i = (Elel]i= @)V (E[el]i # @ A E[e2]i # @ A
Efel]i # EJe2]i A {min(E[el]i U E[e2]i)} = E[el]i))

o M[S,/lte[el,e2]]i = (Elel]i= @)V (Elel]i# @ A E[e2]i # @ A
{min(E[el]i U E[e2]i)} = E[el]i))

o M[S,/gtlel,e2]]i = (E[el]i= o)V (Elel]i# @ N E[e2]i # & A
Efel]i # Ee2]i A {max(E[el]i U E[e2]i)} = E]el]i))

o M[S,/gte[el,e2]]i = (Elel]i=@)V (E[el]i # @ N E[e2]i # & A
{max(E[el]iU E[e2]i)} = E]el]i))

27

5.4. Enumerations

In Alloy, an enumeration can be used to define a number of distinct singleton
signatures with a common ordered base signature. Enumerations are syntactical
sugar, not providing new functionalities but enabling a less verbose specification.
For instance, consider the following enumeration S:

enum S { S1,S2 }

The same behavior can be achieved by defining an abstract ordered signature
S and two singleton signatures S1 and S2 which extend S:

open util/ordering[S]
abstract sig S {}
one sig S1, S2 extends S {}

In our current translation to B, we do not consider that enumerations are
ordered. We rather translate enumerations based on the declared signatures,
i.e., we introduce a deferred set S and two constants S1 and S2 which are
singleton subsets of S. Furthermore, we set the extending signatures to be
distinct. For instance, for the signature S1, this is done using the additional
constraint S1 C S Acard(S1) =1AS1NS2=0.

Not translating enumerations as ordered signatures allows PROB to use ad-
vanced optimization techniques such as symmetry reduction. In case a model
relies on enumerations being ordered, we could of course treat enumerations
as ordered signatures and translate as described in Section In the future,
our translator should check automatically if an Alloy models makes use of the
ordering of enumerations and translate accordingly.

5.5. Sequences

In B, sequences are defined as partial functions with finite and coherent
domains 1..n, where n € N is the size of the sequence. Sequences are therefore
defined as sets of pairs and might be nested arbitrarily.

In Alloy, the field of a signature, the parameters of a quantification and the
arguments of a function can be defined as a sequence of atoms using the seq
keyword. In contrast to B, the elements of a sequence are enumerated from 0
ton —1.

In consequence, we cannot straightforwardly translate sequences from Alloy
to B. If using B’s internal representation of sequences, we would need to increase
each integer value from Alloy accessing a sequence by one, and decrease each
integer value by one which is computed by a sequence operation or used within
one. Moreover, there is no counterpart to most of Alloy’s sequence operations
in B, so we would have to manually implement most of the operations anyway.
We thus decided to retain the domain of a sequence defined by Alloy. For the
translation of a sequence, we define a partial function with domain 0..n — 1
as described in Section [£33] where n € N is the sequence’s cardinality, and
use manually implemented operations on sequences without resorting to B’s
sequence operations.

28

Alloy allows to modify a set of sequences using a set of elements rather than
a single element at a time. For instance, consider the signature sig T {s: seq
Int} which defines a field s as a sequence of integers. Assuming that T has a
scope of exactly two, i.e., T = {T$0, T$1} in the Alloy Evaluator, a call to
T.s.insert[0,{1}+{2}] is satisfiable. For instance, this results in inserting 1
at position 0 in T$0.s and inserting 2 at position 0 in T$1.s. As this behavior
can also be achieved by accessing each field s of T’s instances independently
and cannot be described efficiently by a single expression in B, we decided to
only allow operations on sequences using single elements.

Therefore, we use an additional semantic function E,,.[.]¢ that transforms
a singleton set into a scalar expression. If the input is not a singleton set, a well-
definedness error is thrown by PROB. To do so, we use the definite description
operator, noted MU, described in Section We then define the semantic
function as follows:

I

o Eonelz]i y if Efz]i = {y}

o FEonclz]i = MU(E[x]q)

It is very similar to the semantic function Fy,[.]é, just replacing ¥ by the
MU operator. Again, the first rule is in principle redundant, but improves the
performance of the translation (avoiding the introduction of MU if possible).

By default, an Alloy model defines a maximum allowed length of sequences
due to the SAT encoding. The maximum size can be changed within the scope
of a run or check command by using the seq keyword.

Let m be the maximum allowed length of sequences of a specific run or check
command, and ¢, be the cardinality of the set s in B, i.e., ¢, = card(E[s]i).
The sequence operations provided by Alloy are translated as follows:

e E[s.first]i = E[s]i[{0}]

e E[s.last]i = E][s]i[{cs — 1}]

e E[s.rest]i = IF E[s]i = @ THEN &
ELSE Az.(z € 0..(cs — 2) | E[s]i(z + 1)) END

o E[s.clems]i = ran(E[s]i)
o Els.butlast]i = E[s]i[{cs — 2}]

o M[s.isEmpty]i = E[s]i = @

o M[s.hasDups]i = c, # card(ran(E[s]4))
o E[s.inds]i = 0..(cs— 1)

e Els.lastldz]i = {c, —1}N0..(cs — 1)

o Els.afterLastldz]i = {cs} N0..(m —1)

29

e E[s.idvOf[x]]i = IF (E[s]i) " [{Eone[z]i}] # @ THEN

{min((E[s])) ' [{ Eone[]i}])}
ELSE @ END

o E[s.lastldzOf [x]]i = IF (E[s]i) ' [{Eone[x]i}] # @ THEN

{max((E[s]i) " [{ Eone [2]i}])}
ELSE @ END

o E[s.indsOf[z]]i = (E[s]i) " [{Eonc[z]i}]

e E[s.append[t]]i = (0..(m —1)) < (E[s]iU
Az.(z € cs..(cs + ¢ — 1) | Et]i(z — ¢s)))

o E[s.add[z]]i = IF ¢y < m THEN E[s]iU {cs — Eonelz]i}
ELSE E[s]i END

o E[s.deletelj]]i = IF (0 < E;n[4]¢) THEN
(0..(Eint[7]i — 1) < E[s]i) U Az.(z € Eine[[i]i.-(cs — 2) | E[s]i(z + 1))
ELSE E[s]i END

o Es.setAt[j,z]]i = IF (Emi[j]i > 0 A Ein[j]i < ¢s) THEN
E[s]i < {Eint[j]i = Eone[z]i} ELSE E[s]i END

e E[s.insert[j,z]]i = 0..(m—1)<((0..(Eint[j]i — 1) < E[s]i) U{Eint[7] —
Eonelz]itUAz.(z € (Eint[j]i+1)..csA(z—1) € dom(E][s]i) | E[s]i(2—1)))

o E[s.subseq[from,to]]i =
IF Eint[from]li > 0 A Eppifrom]i < Eini[to]i A Einifto]i < ¢ THEN
Az.(z € 0..(Ejni[to]li — Eimtl[from]i) | E[s]i(z + Eint[from]i))
ELSE @ END

Note that in several translations of sequence operations, e.g., in the transla-
tion of s.append[t], we could use a set comprehension instead of a lambda
expression. However, since lambda expressions constitute total functions, they
improve performance when solving constraints.

As can be seen in the translations, the maximum allowed length of sequences
influences the behavior of several operations. For instance, the result of append-
ing two sequences is truncated if it exceeds the scope of sequences. As described
in Section [£.14] we usually translate all commands into the same B machine. In
case at least two commands define a different maximum allowed length of se-
quences, our translation would possibly behave differently than the Alloy model
does as we can only consider a single scope at a time when translating operations
on sequences.

We thus analyze an Alloy model prior to the translation to determine if it
uses sequences within differently scoped commands, i.e., commands that do not
define a common maximum allowed length of sequences. If so, we only translate
a single command at a time which can be selected by the user within PROB’s
graphical user interface. Otherwise, all commands are translated into the same
B machine.

30

Note that the Alloy Analyzer does not enforce that sequence operations are
called with well-defined sequence&ﬂ In contrast, our translation to B provides
static type safety which improves error detection.

Further, we noticed that the Alloy Analyzer behaves inconsistently regarding
the evaluation of preconditions. The operations delete, setAt and insert
are unsatisfiable if their precondition is false while the other operations always
succeed, e.g., returning the input sequence if an operation’s precondition is false.
To achieve a consistent behavior regarding the use of preconditions, we decided
to not fail for the mentioned operations if their precondition is false but return
the input sequence.

However, we could also translate operations to be unsatisfiable if their pre-
condition is false. As a B expression cannot fail without throwing an error, e.g.,
a well-definedness error, we would need to pass a flag in the environment i to
inform the preceding predicate to fail.

6. Tooling

In the following section, we will first give an overview over the tooling used to
automate the translation from Alloy to B. Additionally, we will give insight into
the Prolog implementation in Section [6.2] and further implementation details.

6.1. Overview

As shown in Figure [2] our automatic translation relies on two software tools.
The first component is a small application (around 500 lines of code, not count-
ing tests) written in Kotlin and running on the JVM. Its purpose is to use the
original parser and typechecker of the Alloy Analyzer to parse Alloy files and
pretty print the resulting abstract syntax tree into a Prolog representation that
can be loaded by PROB’s core. During this first translation, some changes in
representation are done in order to make all information available to the Alloy
Analyzer available to PROB as well, i.e., we extend the abstract syntax tree
with additional information.

Moreover, we generalize the types provided by the Alloy parser to their top-
level signatures. For instance, let S be a top-level signature, and S7, S2 are both
signatures that extend S. The type of the expression S; + S5 provided by the
Alloy Analyzer’s parser is a set (a relation with arity 1) of the two types S and
Ss. For our translation to B, it is more intuitive and necessary to use the most
general type except for univ if present. In the given example, the most general
type is a set of type S. We are then able to easily set up typing constraints for
each Alloy construct during the translation to B. Otherwise, we would need to
generalize types on demand in Prolog. However, two signatures might not have
a parent type except for univ. Since we want to avoid the universe type in B
as described in Section [£4] we define a parent type for each of such signature
collections as a deferred set in B.

4See http://alloytools.org/quickguide/seq.html

31

http://alloytools.org/quickguide/seq.html

Afterwards, the Alloy abstract syntax tree is read by PROB and translated
into PROB’s internal representation of a B machine, following the translation
rules discussed in Section [l The result is an untyped B abstract syntax tree,
that is fed into the regular B typechecker. Once typed, it can be used inside the
model checker or animator as well as in the constraint solver. Furthermore, all
backends available to PROB consume the same internal representation, i.e., the
resulting typed B abstract syntax tree can be fed to them as well. For instance,
a constraint solver which uses the Alloy Analyzer’s Kodkod API [3] to translate
B to SAT is available [II]. Furthermore, an integration with the SMT solver
Z3 [18] can be used to solve constraints [I0], or a combination of the CLP(FD)
and SMT backends where both solvers share constraints [19].

As described in Section run and check commands are translated to B
machine operations. To execute an Alloy command with PROB one can either
use model checking, i.e., try all possible ways to instantiate the constants of the
B translation and examine whether the operation is covered, or use constraint-
based checking, e.g., using the cbc_sequence command of PROB, which will
send the operation’s precondition and the machine’s properties to PROB’s con-
straint solver. In the latter case the machine’s properties are considered as we
translate several constraints in this machine section, for instance, constraints on
the fields of signatures.

In order to use the generated B machine inside other B tools such as Ate-
lierB, PROB can export the internal representation to a regular B machine file.
Further, we provide a PROB preference to translate a single command into the
B machine’s ASSERTIONS section rather than creating a machine operation as
described in Section [£:14] As the assertion of a check command is negated to
search for a counterexample, we remove the negation when adding the constraint
to the B machine assertions. This enables the generation of proof obligations
in AtelierB. The command to be translated can be selected by the user within
PrOB'’s graphical user interface.

6.2. Prolog Encoding of Translation Rules

As stated above, we use a small Kotlin library to extract the AST generated
by the Alloy Analyzer’s parser and typechecker. The resulting file is then read
by PrROB’s Prolog core.

The mathematical rules featured in our translation can quite often be trans-
lated to Prolog clauses straightforwardly. In particular, the implementation
usually consists of single translation rules being implemented by a single cor-
responding Prolog clause. This leads to an implementation that is close to the
formal specification. In consequence, the implementation is comprehensible and
can easily be reviewed, extended and adapted. Take for example the rule for
the Alloy plus operator:

Elp +q]i = E[pliu E[q]i

Listing [5] shows parts of the Prolog code translating the set union from Alloy
to B, where translate_e_p is the Prolog name of the function ET.]i.

32

Alloy
File
.als

Kotlin
1\

1. Alloy Alloy
Parser 2. Prolog AST
and Type Pretty Printer (Prolog)

Checker -pl

Untyped B
AST

5. ProB
Solver, Animator,
Model Checker

Validation
Result

3. Translation 4. ProB
from Alloy to B Typechecker

Figure 2: Phases of the Translation from Alloy to B

The code is somewhat more generic and factors several rules into one, namely
all binary operators that can be translated directly to B operators. Additional
operators that can be directly translated are given by Prolog facts further defin-
ing alloy_to_b_binary_operator. You can also see that the code translates
Alloy’s position information to B (for error messages). The keen observer will
note that the environment ¢ is not present; it is currently encoded using as-
sert/retract (i.e., as Prolog global variables).

7. Empirical Evaluation

To validate the correctness of our translation we have applied it to a variety
of mathematical laws (see Fig. [6) and have checked that PROB does not find
counterexamples to those laws on the translated B machines.

Furthermore, we have translated several Alloy models to B. In the follow-
ing, we will give a brief empirical evaluation of selected models, comparing the
performance of the Alloy Analyzer and PROB.

Benchmarks were run on an Intel Core i7-8750H CPU (2.2GHz) and 16GB
of RAM. We use the median time of five independent checks. The runtime
of the Alloy Analyzer includes generating the conjunctive normal form and
uses the SAT4J backend. For the PROB constraint solver we purely use the
CLP(FD) backend with a linear enumeration order and without extensions like
KodKod [I1] or Z3 [10]. Of course, despite constraint solving itself, processing

33

O © 00O U W

—_

0O~ O Ui W

Listing 5: Parts of the Prolog Code that Translates Alloy’s Set Union to B

translate_binary_e_p(Binary,TBinary) :-
Binary =.. [Op,Argl,Arg2,_Type,P0S],
alloy_to_b_binary_operator (Op,BOp),
translate_e_p (Argl ,TArgl),
translate_e_p (Arg2,TArg2),
translate_pos (P0OS,BP0S),
TBinary =.. [BOp,BPOS,TArgl,TArg2].

alloy_to_b_binary_operator (plus,union).

Listing 6: Checking of Mathematical Laws

abstract sig setX { }
one sig V {

SS: set setX,

TT: set setX,

VV: set setX,

Empty: set setX
}
fact EmptySet { no V.Empty }
assert SetLaws {

V.SS + V.SS = V.SS

no V.SS - V.SS
.88 = V.SS & V.SS
.88 - V.Empty = V.SS
.Empty = V.SS - V.SS
.Empty - V.SS = V.Empty
.88 + V.TT = V.TT + V.SS

<

s <

}
check SetLaws for 5 setX, 7 int

an Alloy model using the Alloy Analyzer’s parser, pretty printing the model to
Prolog, transforming types as described in Section [6] and translating the model
to B needs some time. However, this is not a bottleneck for performance. In the
following, we thus assume each model to be loaded in the Alloy Analyzer and
PROB, i.e., we only measure the impact of our translation on finding solutions
to a model’s constraints.

Since the Alloy Analyzer translates models to SAT, we assume it to be ef-
ficient for mostly relational models. However, SAT encoding is often inefficient
for integers, e.g., one has to encode arithmetic using binary adders. PROB
on the other hand has native support for integers, hopefully leading to bet-
ter performance for arithmetic calculations. In contrast, relations often cause
a combinatorial explosion, which results in weaker performance compared to
the Alloy Analyzer. To explore both extremes, we chose different models for
performance comparison.

An exact opposite to our translation has been presented by Plagge and

34

Leuschel [T], which uses the Alloy Analyzer’s Kodkod API [3] to translate B
to SAT. We further solve the translated models using PROB with its Kodkod
backend in order to investigate if our translation from Alloy to B is needlessly
complicated. If this is not the case, we expect the runtime to be only slightly
larger than the one of the Alloy Analyzer. Note that in recent work [? | we
have shown that an integration of the Alloy and PROB backends can be very
useful for complex constraint satisfaction problems.

We start with translating an Alloy model of the river crossing puzzle, a type
of transport puzzle with the goal to carry several objects from one river bank
to another. There are constraints defining which objects are safe to be left
alone, e.g., a fox cannot be left alone with a chicken. The model is interesting
for our performance evaluation as it uses an ordered signature for states. The
Alloy Analyzer finds a solution in 21 ms (6 ms only SAT solving). Although the
translated model is valid, PROB fails to find a solution in less than 5 minutes.

The B machine defines three relations, two of which have an ordered sig-
nature for a domain. Using a total function instead of a relation improves
performance: PROB now finds a solution in about 7 s. After rewriting the
model in idiomatic B style by hand, PROB can solve it in about 80 ms. How-
ever, this translation is a manual optimization using background knowledge and
cannot simply be generalized. Using the Kodkod backend of PROB does not
improve performance significantly. This indicates that for this specific model
our translation is not performant which is most likely caused by the translation
of ordered signatures.

Besides the river crossing puzzle, we translated a model of the n queens
problem as it makes use of integer arithmetic. Here, the goal is to place n
queens on a n x n chess board without two queens threatening each other. The
chess board is represented as tuples of row and column, encoded as integers.

We evaluated the n queens model for n € 4..20 using PROB and the Alloy
Analyzer with the MiniSat and SAT4J backend. As a comparison, we also
measured the time that the Alloy Analyzer needs to generate the conjunctive
normal form. The evaluation in Figure [|shows that PROB is the fastest solver
for the chosen model. PROB’s runtime for solving the constraints ranges from
5 - 1328 ms. The time needed for generating the conjunctive normal form is
similar to the time PROB needs for solving the constraints and ranges from 18 -
1028 ms. The solving time of the Alloy Analyzer gets worse when increasing the
bit-width for n > 8 and n > 16. In Figure 3] we can see that the runtime of each
solver is increasing non-linearly, especially when using the Alloy Analyzer with
the SAT4J backend. On the one hand, this might be caused by inaccuracies in
our measurements. On the other hand, the constraints might be easier to solve
for specific configurations. PROB’s runtime for n = 20 is an outlier and the
cause of this performance drop needs to be investigated more thoroughly. As
a comparison, PROB can solve the translated model for n = 21 in about 100
ms. Further, when using a randomized enumeration order, PROB can solve the
translated model for n = 20 in about 80 ms. Note that an idiomatic B version
of the n queens puzzle for n = 20 can be solved in around 20 ms by PROB.
Altogether, it can be seen that integers are a bottleneck for performance when

35

—— CNF Generation /
35000 4 - Alloy MiniSat /-
—-- Alloy SAT4J /
300004 —~- ProB /
/
25000 =t
g !
£ 20000 i
E i
E !
= 15000 - i
!
10000 - I
/
.-
5000 TN
'__.J‘
0 ..q--'_/ e -
T T T T T T T T .
4 6 8 10 12 14 16 18 20
n

Figure 3: Finding a Single Solution for the n Queens Puzzle with Varying n

encoding constraints to pure SAT problems.

As a rather simple benchmark, we translated a model of the knights and
knaves puzzle. The puzzle defines two types of humans, which either always tell
the truth (knights) or always lie (knaves). The goal is to determine the type of
several persons from a set of statements each made by one person. The model of
the puzzle that we used contains three individual settings with statements made
by two or three persons. The model just uses joins, set unions as well as one
existential quantification. The Alloy Analyzer finds a solution for the model in
10 ms (6 ms only SAT solving) while PROB needs 5 ms. Solving the translated
model with PROB and its Kodkod backend needs about 150 ms, which is most
likely caused by the additional overhead of translating B to Kodkod.

Furthermore, we translated a model of the so called jobs puzzle [20], which
defines eight distinct jobs and four persons whose names imply their gender.
The goal is to allocate two different jobs to each person and establish the re-
lationships between male and female persons considering a set of constraints.
For instance, a constraint states that the husband of the chef is the telephone
operator. Besides the common join operations, the model uses a predicate from
the extension util /relation, defines a field to be quantified by some, and uses
three quantifications as well as two cardinality constraints. The Alloy Analyzer
finds a solution in 23 ms (9 ms only SAT solving). The PROB constraint solver
is not able to find a solution within several minutes. As our translation from Al-

36

loy to B has to be generalized, some translations considering certain arities are
currently not ideal for the PROB constraint solver. To counter this, we intend
to provide additional rules to rewrite B abstract syntax trees prior to solving
constraints as described in Section [f.16]and improve the constraint solver in gen-
eral. When using the Kodkod backend of PROB, the translated model can be
solved in about 50 ms. This shows that the translated B model is not needlessly
complicated but contains specific constructs that cannot be handled efficiently
by PrRoB’s CLP(FD) backend. As a comparison, an idiomatic B version of the
Jobs puzzle [? | can be solved by PROB’s CLP(FD) backend in about 150 ms.

To obtain further benchmarks, we translated a model of the Zebra puzzle
(also called Einstein’s puzzle). The goal is to find a person owning a specific
pet for given constraints describing the preferences and houses of a group of five
persons. There is only one solution. The model defines one ordered signature,
five unordered signatures, and uses fifteen existential quantifications. The Alloy
Analyzer finds the solution in 12 ms (5 ms only SAT solving). PROB on the other
hand currently needs 748 ms to find the solution. Again, some constraints are
not ideal for PROB and require improvements to the post-processing described
in Section or the constraint solver itself. In this case, using the Kodkod
backend of PROB neither improves nor worsens performance. Note that PROB
can solve the original Z version of the Zebra puzzle in about 100 ms.

Lastly, we translated a model of the towers of Hanoi puzzle, with three stakes
and several discs with different sizes. The model we use defines three ordered sig-
natures, several joins and nested quantifiers. The Alloy Analyzer finds a solution
in about 5.2 s while PROB is currently not able to find a solution within several
minutes. Using the Kodkod backend of PROB does not improve performance
significantly. In this case, our translation of orderings as presented in Section[5.3|
is inefficient for constraint solving. The Alloy model defines a signature field as a
relation between three ordered signatures: sig State { on : Disc -> one Stake }.
In our current translation to B, this results in a possibly large set leading to a bad
performance. To counter this, we want to investigate the causes of performance
loss more thoroughly and improve our translation wherever possible. Moreover,
we want to investigate a translation into a (symbolic or explicit) model checking
rather than a constraint satisfaction problem. That is, in case access on ordered
elements is linear, we can encode orderings as B machine states using machine
variables and operations on orderings as state transitions using machine oper-
ations. Doing so, the PROB model checker can be used to find solutions for a
model which uses ordered signatures. Note that the PROB model checker can
solve manually specified B versions of the river crossing puzzle in about 100 ms
and the towers of Hanoi puzzle in about 250 ms.

In summary, we have translated several Alloy models of well-known logic
puzzles to classical B. As pointed out, our translation is not optimal for models
using relational operators or ordered signatures regarding PROB’s performance
in solving constraints. Yet, PROB outperforms the Alloy Analyzer for models
using integers by several orders of magnitude. Table [I| summarizes the com-
parison of the Alloy Analyzer’s and PROB’s runtimes in solving the presented
models. We used a maximum solver timeout of five minutes. Further, we present

37

Table 1: Performance Evaluation

Runtime in ms

Model

Alloy ProB
River Crossing Puzzle 21 > 300000
4 Queens Puzzle 26 5
8 Queens Puzzle 91 8
12 Queens Puzzle 820 16
16 Queens Puzzle 1334 78
20 Queens Puzzle 6850 1328
Knights and Knaves Puzzle 10 5
Jobs Puzzle 23 > 300000
Zebra Puzzle 12 748
Towers of Hanoi Puzzle 5201 > 300000

the results using the translation as is without any manual optimization of the
generated B code and without using the Kodkod or Z3 backend of PROB. The
presented times of the Alloy Analyzer for solving the n queens puzzle are the
ones using the Minisat backend.

8. Improvements Over Existing Alloy Tools

Even though our translation cannot always compete with the Alloy Analyzer
as we have demonstrated in Section [7] it provides several interesting improve-
ments and applications.

8.1. Integers

Mathematically speaking, the integers in Alloy are unsound when overflow
detection is turned off. In contrast, PROB has multi-precision integers without
overﬂow According to Milicevic and Jackson [21I] the Alloy Analyzer can
detect models with overflows, but to our knowledge cannot detect where an
overflow has prevented a model being found. For this purpose, an alternative to
translating a model to B would be to use an SMT-based backend for Alloy [22]
923, 2.

For example, for the model shown in Listing [7] Alloy 4.2 finds a counterex-
ample, while PROB correctly determines that no counterexample exists. If over-
flows are permitted (the default), the Alloy Analyzer finds a counterexample for
the first formula. If overflows are forbidden, no counterexample is detected by
the Alloy Analyzer for the first formula, but then a counterexample is found for
the second one. With higher integer ranges the translation fails.

S5CLP(FD) overflows are caught and handled by custom implementation.

38

— =

—_

= O ©0oo g0 Utk Wk

= O © 00O Ui WK -

Listing 7: Alloy Model Demonstrating the Unsoundness of Integers

open util/integer
abstract sig setX { }
one sig V {
SS: setX -> setX
}
assert Bug {
#(V.S8S)>1 implies #(V.SS->V.SS)>3
#(V.SS->V.SS)=0 iff no V.SS
}
// for 8 int Translation capacity exceeded
check Bug for 3 setX, 7 int

Listing 8: Exemplary Alloy Model Using Higher-Order Quantification

open util/integer
abstract sig setX { }
one sig V {
SS: setX -> setX,
TT: setX -> setX
}
assert HO {
V.SS + V.SS = V.SS
all xx : V.SS | (xx in V.TT implies xx in V.SS & V.TT)
}
check HO for 3 setX

8.2. Higher-Order Quantification

The universal quantification shown in Listing [8] using the same signatures
as in Listing [7] causes an error. The Alloy Analyzer states that analysis cannot
be performed since it requires higher-order quantification that could not be
skolemized. PROB, on the other hand, can check the validity of this assertion.
An extension of Alloy called Alloy* [I6] might be able to handle this example.
In the future, we would like to investigate translating Alloy* models to B.

8.3. Proof

Finally, our translation to B also makes it possible to apply existing provers
for the language, such as AtelierB [I3], to translated Alloy models. One could
thus try to develop a proof assistant for Alloy, similar to the work pursued by
Ulbrich et al. [25] via a translation to the first-order logic supported by Key.

In the example shown in Listing[J] we can prove the assertion using AtelierB’s
prover for any scope, by applying it to the translated B machine. We check
that the move predicate, removing one element from src and adding it to dst,
preserves the invariant src+dst=0bject, i.e., that the union of src and dst
covers exactly Object.

Note that our translation does not (yet) generate an idiomatic B encoding,
with move as a B operation and src+dst=0bject as an invariant: it generates

39

0O U W

e el el
T W N - OO

Listing 9: Exemplary Alloy Model to Prove an Assertion in AtelierB

sig Object {}
sig Vars {
src,dst : Object
}
pred move (v, v’: Vars, n: Object) {
v.src+v.dst = Object
n in v.src
v’.src = v.src - n
v’.dst v.dst + n
}
assert add_preserves_inv {
all v, v’: Vars, n: Object |
move [v,v’,n] implies v’.src+v’.dst = Object

}

check add_preserves_inv for 3

a check operation encoding the predicate add_preserves_inv with universal
quantification. Listing [I0] shows the B machine we have input into AtelierB.

It was obtained by pretty-printing from PROB. For the translation from Al-
loy to B, we enabled the preference to translate a model without scopes described
in the end of section Section as well as the preference to translate a single
command into the B machine assertions described in the end of Section (so
that AtelierB generates the desired proof obligation).

9. Related and Future Work

Translations to Alloy have been pursued from B [26] 27] and also Z [28].
Rather than translation directly to Alloy, a translation from B to Kodkod has
been introduced and implemented inside PrROB [11].

Other formal languages have previously been translated to B as well, e.g.,
Z [29] and TLA™ [30]. A comparison between TLATand Alloy has been pre-
sented by Macedo and Cunha [31].

The original paper by Jackson [I7] (notably Figure 2) provides a semantics
of the kernel of Alloy in terms of logical and set-theoretic operators. Our trans-
lation rules can be seen as an alternate specification of this semantics, using
the B operators and also using B quantification. Future work could be a formal
proof of the equality of the different semantics given for Alloy.

Another, albeit less thorough approach, would be to implement a combined
solver that runs the Alloy Analyzer and PROB in conjunction and thus verifies
the results using a double chain.

While we strive for full support of the Alloy language, we currently do not
provide custom implementations for all available utility modules. In particular,
we are missing implementations for the translation of common operations on
graphs and ternary relations. We currently just translate these modules using
our tool as they are defined in Alloy. Of course, the resulting translation might
not be as efficient as providing custom implementations.

40

0O U W

e el el e
© 00O U W~ OO

Listing 10: Translated Alloy Model to Prove an Assertion in AtelierB

MACHINE alloytranslation

SETS /* deferred x/
Object; Vars

CONCRETE_CONSTANTS
src_Vars, dst_Vars

PROPERTIES
src_Vars : Vars --> Object
& dst_Vars : Vars --> Object
ASSERTIONS
'(v,v_,n).(v : Vars & v_ : Vars & n : Object

=>

(src_Vars[{v}] \/ dst_Vars[{v}] = Object &
v |->n : src_Vars &

src_Vars[{v_}] = src_Vars[{v}] - {n} &
dst_Vars[{v_3}] = dst_Vars[{v}] \/ {n}

=>

src_Vars [{v_}] \/ dst_Vars[{v_}] = Object)

END

Furthermore, we intend to translate Alloy* [16] and Electrum [32] (which is a
temporal extension of the Alloy modeling language) to B. As B and PROB have
support for higher-order quantification and linear temporal logic, translation
should be straightforward.

While our translation of orderings, as presented in Section [5.3] allows trans-
lating arbitrary Alloy models, the resulting B machine is often suboptimal for
PROB’s solving kernel as shown in Section[7] To improve performance, we want
to investigate alternative translations of orderings. For instance, we could im-
pose an order on the elements of a signature S by defining a bijective function
S>»0..(card(S) — 1) allocating unique indices to the elements. Further, we want
to investigate a translation into a (symbolic or explicit) model checking rather
than a constraint satisfaction problem. In particular, we intend to translate
predicates over states and their successors into B operations. While this is not
possible in general, e.g., in the presence of predicates relating more than two
states, it would allow us to use symbolic model checking algorithms [33] to find
solutions.

Near and Jackson [34] presented an imperative extension of Alloy, i.e., mak-
ing a step towards B and its operations. Similarly, Frias et al. [35] [36] extended
Alloy with actions. Cunha [37] presented an approach using bounded model
checking for temporal properties in Alloy. It would be interesting to extend
our translation and produce idiomatic B machines with B operations from such
Alloy models.

As soon as our translation relies more on operations, we want to investigate
translating into a set of models linked by refinement rather than translating an
Alloy model into a single B machine. However, since we currently do not impose
any restrictions on the Alloy model to be translated, it remains to be seen to

41

what extent automatic refinement techniques such as the one used in BART [38]
or the one introduced by Iliasov et al. [39] can be used efficiently.

10. Discussions and Conclusions

In summary, we have presented an automatic translation of Alloy to B,
which provides an alternative semantics definition of Alloy, and enables proof
and constraint solving tools of B to be applied to Alloy specifications. We have
shown empirically that for certain constraints, the B language tools in general
and PROB in particular are superior to the Alloy Analyzer and its SAT back-
end. For other constraints however, the Alloy Analyzer outperforms PROB. As
expected, different backends exhibit different strengths and weaknesses. Using
our translation, we make PROB’s backends available to Alloy users, enabling
them to experiment with technologies other than the ones employed by the
Alloy Analyzer.

The formal definition of the translation revealed both shortcomings and el-
egant features of Alloy and B. One aspect where B is awkward is the treatment
of tuples: many encodings exist and the modeler has to know which one is being
used. Associative tuples with flexible join and projection operations (similar to
database operations) would be a very useful addition to B.

The object-oriented notation of Alloy makes specifications more modular
and easier to read than classical B and is closer to a UML-like model that most
conventional designers are familiar with. In B, one can use records or use B’s
machine decomposition statements like INCLUDE, but the syntax is not as handy
as Alloy’s.

Alloy allows expressing certain constructs in a much more concise fashion,
showing that B sometimes is not as expressive as desired. However, the same
applies for Alloy as well. Multiplicity annotations in Alloy are inspired from
conceptual modelling notations, but their mathematical representation relies on
well-known classes of functions that the B notation natively supports concisely.
We have also shown that B can be much more concise and expressive especially
when dealing with integers.

Alloy is not tailored for transition system analysis; system behavior is ana-
lyzed using bounded traces. PROB offers sophisticated tools for analyzing the
transition graph of a system; it supports invariant and deadlock checks, LTL]e]
and CTL, fairness constraints, reachability analysis, and model-based testing.

In general, a comparison and translation like the one presented in this article
should inspire the evolution of both languages. We hope that our translation
can serve as a vehicle of communication between the Alloy and B communities.

[1] J.-R. Abrial, The B-book: Assigning Programs to Meanings, Cambridge
University Press, New York, NY, USA, 1996.

[2] D. Jackson, Software Abstractions: Logic, Language and Analysis, MIT
Press, 2006.

42

[3] E. Torlak, D. Jackson, Kodkod: A Relational Model Finder, in: Proceed-
ings TACAS, Vol. 4424 of LNCS, Springer, 2007, pp. 632—647.

[4] M. Leuschel, J. Bendisposto, I. Dobrikov, S. Krings, D. Plagge, From An-
imation to Data Validation: The ProB Constraint Solver 10 Years On, in:
J.-L. Boulanger (Ed.), Formal Methods Applied to Complex Systems: Im-
plementation of the B Method, Wiley ISTE, Hoboken, NJ, 2014, Ch. 14,
pp. 427-446.

[5] M. Leuschel, M. Butler, ProB: An automated analysis toolset for the B
method, Int. J. Softw. Tools Technol. Transf. 10 (2) (2008) 185-203.

[6] M. Leuschel, M. Butler, ProB: A model checker for B, in: Proceedings
FME, Vol. 2805 of LNCS, Springer, 2003, pp. 855-874.

[7] J. Jaffar, S. Michaylov, Methodology and Implementation of a CLP System,
in: Proceedings ICLP, MIT Press, 1987, pp. 196-218.

[8] M. Carlsson, G. Ottosson, B. Carlson, An Open-Ended Finite Domain
Constraint Solver, in: Proceedings PLILP, Vol. 1292 of LNCS, Springer,
1997, pp. 191-206.

[9] S. Krings, M. Leuschel, Constraint Logic Programming over Infinite Do-
mains with an Application to Proof, in: Proceedings WLP, Vol. 234 of
EPTCS, Electronic Proceedings in Theoretical Computer Science, 2016.

[10] S. Krings, M. Leuschel, SMT Solvers for Validation of B and Event-B Mod-
els, in: Proceedings iFM, Vol. 9681 of LNCS, Springer, 2016.

[11] D. Plagge, M. Leuschel, Validating B, Z and TLA ™ using ProB and Kod-
kod, in: Proceedings FM, Vol. 7436 of LNCS, Springer, 2012, pp. 372-386.

[12] A. Siilflow, U. Kiihne, R. Wille, D. Grofe, R. Drechsler, Evaluation of
SAT-like Proof Techniques for Formal Verification of Word-Level Circuits,
in: Proceedings IEEE WRTLT, IEEE Computer Society Press, Beijing,
China, 2007.

[13] ClearSy, Atelier B, User and Reference Manuals, Aix-en-Provence, France,
available at http://www.atelierb.eu/ (2009).

[14] S. Krings, J. Schmidt, C. Brings, M. Frappier, M. Leuschel, A Translation
from Alloy to B, in: Proceedings ABZ, Vol. 10817 of LNCS, Springer, 2018,
pp. 71-86.

[15] D. Jackson, C. A. Damon, Elements of Style: Analyzing a Software Design
Feature with a Counterexample Detector, in: Proceedings ISSTA, ISSTA
96, ACM, New York, NY, USA, 1996, pp. 239-249.

[16] S. Krings, M. Leuschel, Proof Assisted Bounded and Unbounded Symbolic
Model Checking of Software and System Models, Sci. Comput. Program.

43

[17] A. Milicevic, J. P. Near, E. Kang, D. Jackson, Alloy*: A General-Purpose
Higher-Order Relational Constraint Solver, Formal Methods in System De-
sign.

[18] D. Jackson, Alloy: A Lightweight Object Modelling Notation, ACM Trans-
actions on Software Engineering and Methodology 11 (2002) 256-290.

[19] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1997.

[20] R. T. Boute, The Euclidean Definition of the Functions Div and Mod, ACM
Trans. Program. Lang. Syst. 14 (2) (1992) 127-144.

[21] S. Krings, Towards Infinite-State Symbolic Model Checking for B and
Event-B, Ph.D. thesis, Heinrich-Heine-University, Diisseldorf, Germany
(2017).

[22] L. de Moura, N. Bjgrner, Z3: An Efficient SMT Solver, in: Proceedings
TACAS, Vol. 4963 of LNCS, Springer, 2008, pp. 337-340.

[23] S. Krings, M. Leuschel, SMT Solvers for Validation of B and Event-B Mod-
els, in: Proceedings iFM, Vol. 9681 of LNCS, Springer, 2016, pp. 361-375.

[24] S. Krings, M. Leuschel, P. Korner, S. Hallerstede, M. Hasanagic, Three Is
a Crowd: SAT, SMT and CLP on a Chessboard, in: Proceedings PADL
2018, Vol. 10702 of LNCS, Springer, 2018, pp. 63-79.

[25] L. Wos, R. Overbeck, E. Lusk, J. Boyle, Automated Reasoning: Introduc-
tion and Applications, Prentice Hall, Old Tappan, 1984.

[26] M. Leuschel, D. Schneider, Towards B as a High-Level Constraint Mod-
elling Language, in: Y. Ait Ameur, K.-D. Schewe (Eds.), Abstract State
Machines, Alloy, B, TLA, VDM, and Z, Vol. 8477 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2014, pp. 101-116.

[27] A. Milicevic, D. Jackson, Preventing Arithmetic Overflows in Alloy, Sci.
Comput. Program. 94 (2014) 203-216.

[28] E. Torlak, M. Taghdiri, G. Dennis, J. P. Near, Applications and Extensions
of Alloy: Past, Present and Future, Mathematical Structures in Computer
Science 23 (4) (2013) 915-933.

[29] A. A. E. Ghazi, M. Taghdiri, Analyzing Alloy Formulas using an SMT
Solver: A Case Study, CoRR abs/1505.00672.

[30] B. Meng, A. Reynolds, C. Tinelli, C. W. Barrett, Relational Constraint
Solving in SMT, in: Proceedings CADE, Vol. 10395 of LNCS, Springer,
2017, pp. 148-165.

44

[31] M. Ulbrich, U. Geilmann, A. A. E. Ghazi, M. Taghdiri, A Proof Assistant
for Alloy Specifications, in: Proceedings TACAS, Vol. 7214 of LNCS, 2012,
pp. 422-436.

[32] L. Mikhailov, M. J. Butler, An Approach to Combining B and Alloy, in:
Proceedings ZB, Vol. 2272 of LNCS, Springer, 2002, pp. 140-161.

[33] P. J. Matos, J. Marques-Silva, Model Checking Event-B by Encoding into
Alloy, in: Proceedings ABZ, Vol. 5238 of LNCS, Springer, 2008, p. 346.

[34] P. Malik, L. Groves, C. Lenihan, Translating Z to Alloy, in: Proceedings
ABZ, Vol. 5977 of LNCS, Springer, 2010, pp. 377-390.

[35] D. Plagge, M. Leuschel, Validating Z Specifications using the ProB Anima-
tor and Model Checker, in: Proceedings iFM, Vol. 4591 of LNCS, Springer,
2007, pp. 480-500.

[36] D. Hansen, M. Leuschel, Translating TLA+ to B for validation with ProB,
in: Proceedings iFM, Vol. 7321 of LNCS, Springer, 2012, pp. 24-38.

[37] N. Macedo, A. Cunha, Alloy Meets TLA+: An Exploratory Study, CoRR
abs/1603.03599.

[38] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, D. Kuperberg, Lightweight
Specification and Analysis of Dynamic Systems with Rich Configurations,
in: Proceedings FSE, FSE 2016, ACM, New York, NY, USA, 2016, pp.
373-383.

[39] J. P. Near, D. Jackson, An Imperative Extension to Alloy, in: Proceedings
ABZ, Vol. 5977 of LNCS, 2010, pp. 118-131.

[40] M. F. Frias, J. P. Galeotti, C. L. Pombo, N. Aguirre, DynAlloy: Upgrading
Alloy with Actions, in: Proceedings ICSE, 2005, pp. 442-451.

[41] M. F. Frias, C. L. Pombo, J. P. Galeotti, N. Aguirre, Efficient Analysis of
DynAlloy Specifications, ACM Trans. Softw. Eng. Methodol. 17 (1) (2007)
4:1-4:34.

[42] A. Cunha, Bounded Model Checking of Temporal Formulas with Alloy, in:
Proceedings ABZ, Vol. 8477 of LNCS, 2014, pp. 303-308.

[43] A. Requet, BART: A Tool for Automatic Refinement, in: E. Borger,
M. Butler, J. P. Bowen, P. Boca (Eds.), Abstract State Machines, B and
Z, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 345-345.

[44] A. Tiasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, Patterns for Re-
finement Automation, in: F. S. de Boer, M. M. Bonsangue, S. Hallerstede,
M. Leuschel (Eds.), Formal Methods for Components and Objects, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 70-88.

45

	Introduction
	Introduction to Alloy and B
	Primer on Alloy
	Primer on B
	Comparing Alloy and B

	Translation Example
	Translating Signatures
	Translating Facts and Predicates

	Formal Description of the Translation
	Overview of the Semantic Functions
	Example
	Signature and Field Declarations
	Universe and Identity
	Connectives and Simple Predicates
	Simple Expressions
	Representing Tuples
	Cartesian Product
	Domain and Range Restriction
	Join
	Quantifications, Set Comprehensions and Identifiers
	Conditionals
	Fact, Function & Predicate Declaration
	Assertion Declaration and Run & Check Commands
	Multiplicity Annotations
	Post-Processing Optimization Rules

	Translation of Alloy Extensions
	Integers and Natural Numbers
	Relations
	Orderings
	Enumerations
	Sequences

	Tooling
	Overview
	Prolog Encoding of Translation Rules

	Empirical Evaluation
	Improvements Over Existing Alloy Tools
	Integers
	Higher-Order Quantification
	Proof

	Related and Future Work
	Discussions and Conclusions

