
Verification of SGAC Access Control Policies using
Alloy and ProB

Nghi Huynh∗†, Marc Frappier†, Amel Mammar‡ and Régine Laleau∗
†Université de Sherbrooke, Québec, Canada

∗Université Paris-Est Créteil Val de Marne, France
‡Institut Mines-Télécom/Télécom SudParis, France

Abstract—This paper investigates the verification of
access control policies for SGAC, a new healthcare
access-control model, using Alloy and ProB, two first-
order logic model checkers based on distinct technolo-
gies. SGAC supports permission and prohibition, rule
inheritance among subjects and resources and conflicts
resolution. In order to protect patient privacy while en-
suring effective caregiving in safety-critical situations,
we check different properties such as accessibility, in-
effective rule detection. Our performance results show
that ProB performs two orders of magnitude better
than Alloy. Results are promising enough to consider
ProB for verifying patient policies in SGAC.

Index Terms—healthcare, access control, consent
management, formal model, verification, Alloy, ProB.

I. Introduction
With medical data being stored electronically, access

control over these sensitive data has become crucial and
compulsory. But control over medical data is not an easy
task. Access control must ensure the patient’s privacy,
not hinder health worker’s work and not endanger the
patient’s life. SGAC (Solution de Gestion Automatisée
du Consentement — Automated Consent Management
Solution) [12] is an access control method which has been
developed for the Sherbrooke University Hospital. It allows
patients and the hospital to specify fine-grained access
control rules over the medical data. In order to ensure
patient safety and privacy, properties must be checked on
the access control policies. For instance, the hospital would
like to ensure that crucial patient data is available when
the patient’s life is in danger. Patients want to ensure
that sensitive data that could damage their reputation,
employability or social relationships are only disclosed to
the appropriate persons in the right context. The flexibility
of SGAC’s policy language makes it mandatory to use
automated verification techniques to check properties of
SGAC access control policies. Reusing existing model-
checking tools is more cost effective and less risky in terms
of long-term maintenance, while allowing for leveraging of
future improvements.

There are three main classes of model checkers for
first-order logic: SAT-based approaches like Alloy [13],
constraint-based approaches like ProB [14], and SMT-
based approaches like CVC4 [5] and Z3 [4]. ProB and Alloy

are easier to use to model SGAC policies and they have
both been shown to be useful in solving graph problems
and complex first-order constraints like the ones used in
SGAC [7], [8].
In this paper, we evaluate the applicability of Alloy

and ProB for checking properties of SGAC policies such
as verifying that a user has access to a document in a
given context, or identify the rules that are overridden
by other rules, and thus have no effect on the access
granting decisions, and hence may denote misrepresented
safety/privacy requirements.
The rest of this paper is structured as follows. Section II

introduces SGAC, and its conflict resolution mechanism
for ordering rules applicable to a given request. Section III
presents Alloy and ProB, and a brief overview of the
formalisation of SGAC in these respectives languages. The
complete specifications are available at [10]. Verification
performance results are given in Section IV. Section V
compares our findings with similar work on access control.
We conclude this paper with an appraisal of our work in
Section VI.

II. SGAC: presentation

We present here all elements of SGAC needed to under-
stand property verification. A more detailed description
can be found in [12]. SGAC handles requests made by
users to access documents and returns a permission or
a prohibition depending on the rules specified by the
patients, the hospitals or required by laws and regulations.
To evaluate requests, SGAC relies on two directed acyclic
graphs (DAG): the subject and the resource graphs. The
subject graph represents the hierarchy which mirrors the
functional organisation chart or any grouping of users
relevant for access control. The resource graph represents
the taxonomy of medical documents and their organisation
in the healthcare facilities. A request is made by a single
user (sink of the subject graph) to do an action on a single
document (sink of the resource graph). Depending on its
modality, a rule authorises or denies a subject (node of the
subject graph) to do an action on a resource (node of a
resource graph) under a condition.

A. Behaviour and conflict resolution
A rule applies to a request when i) there is a path from

the rule’s subject to the request’s subject, ii) there is a
path from the rule’s resource to the request’s document,
and the rule’s condition holds. When many rules with
different modalities apply to the same request, a situation,
typically called a conflict in the literature, arises. To decide
whether access is granted or denied, we define an ordering
on rules. Rules are assigned priorities to help the ordering.
The rule with the “highest” precedence determines the
access decision. Let r1, r2 be two applicable rules for a
request.
1) If r1 has a smaller priority than r2, we say that r1

has precedence over r2.
2) If r1 and r2 have the same priority, and if the subject

of r1 is more specific than the subject of r2 (i.e., the
subject of r1 is a descendant of the subject of r2 in
the subject graph), then r1 has precedence over r2.

3) If r1 and r2 have the same priority, and neither of
their subjects is more specific than the other, then
prohibitions have precedence over permissions.

This ordering is not total. There may be two rules r1, r2
such that neither of them precedes the other. However, in
such a case, r1 and r2 have the same modality, thus there
is no conflict and the decision is the modality of these
elements with highest precedence in this ordering. The
conflict resolution method relies on the fact that, generally,
a rule which targets a smaller group (inclusion-wise) than
other rules should have precedence over these. This conflict
resolution method is absolutely autonomous and does not
require the intervention of an external actor.

B. Example
We illustrate the presented behaviour with the following

example: let Bill be an anaesthetist and a surgeon. Since
he has two profiles, he inherits access privileges from both
of them. In Fig. 1, rules which apply to a request of
Bill to read the document D are: r1, r2, r3 and r4. We
suppose they share the same priority. In the case where
all these four rules are active under the same context
(i.e., their condition holds): surgeons are not able to
access the document D while anaesthetists can, making
Bill unable to access the document. We have r1 that is
less specific than r2, and the same goes for r3 and r4.
Since r2 and r4’s subjects are incomparable, precedence is
given to the prohibition, resulting in a prohibition for Bill’s
request. If there is a context where only r1, r3 and r4 are
active, Bill’s request would be granted in this context since
anaesthetists would be allowed to access the document.

III. Formalisation of SGAC
In this section, we present an overview of the formali-

sation of SGAC in Alloy and B. For the sake of concision,
most of the specification is omitted. The complete speci-
fications are available at [10], together with an expanded

Fig. 1: Example of rule precedence

Fig. 2: Basic structure of SGAC

version of this paper highlighting the key elements of the
specifications.

A. Formalisation of SGAC in Alloy
Alloy is a formal language for describing relational

structures. Relations are declared using an object-oriented
syntax. Alloy is supported by a tool, the Alloy Analyzer,
for analysing and exploring the relational specification.
It is a first-order logic model finder: the solver takes the
constraints of a specification and finds instances that sat-
isfy them. Alloy offers a customisable graphical interface
and an evaluator which improves the user experience and
greatly helps in understanding the model and counterex-
amples. Its graphical interface is particularly convenient
when handling complex graphs.
The data structures called signatures needed to model

SGAC are presented in Figure 2, which also illustrates
the relationships between these signatures. The relations
subSucc , resSucc and ruleSucc denote the edges of
the subject, the resource and rule graphs. A rule graph
denotes the precedence among the rules, and must be
created for each request and context since the ordering is
made on rules applicable to the request in a given context.
However to reduce the computational burden, we came
with optimisations: instead of computing a rule graph for
each request and context, we only compute a graph for
each context. Each rule graph determines the result of the
request given a context: instead of looking for sinks, we
look for vertices that have all their succesors’ conditions
unsatisfied in the given context that we call pseudo-sinks.
The crucial part of the Alloy formalisation lies within the

definition of the rule ordering ruleSucc defined over
rules that apply to a given request: i) rules are compared
by their priority and subject specificity; ii) only maximal
elements (thus of the same priority) are compared by their
modality.

B. Formalisation of SGAC in B
The B language is used to specify systems, by describing

state variables and operations that modify these state
variables. A B specification consists of B machines. A
machine contains the following clauses: sets, constants,
properties of the constants, state variables, invariant of the
state variables, initialisation and operations. ProB [14] is a
model checker and animator for the B language [1]. It uses
first-order logic, arithmetic, sets, relations and functions.

In order to model SGAC in B, we use the model finder
and constraint solving features of ProB. We tried two
approaches. In the first approach, we model the SGAC
policies and the properties using solely sets, constants and
properties clause of a B machine, in a way pretty similar to
the Alloy specification. This approach failed because ProB
was unable to solve the constraints in an efficient manner.
In the second approach, we use variables and operations to
impose an order in which the constraints can be efficiently
solved by ProB. Thus, some of the data is represented as
constants and properties, and the others are represented
as state variables which are computed in a specific order
in the initialisation clause of the machine, and operations
are used to compute values of the properties to check.
This approach is highly successful and represents a decisive
advantage for ProB in comparison with Alloy. Our final
model is structured as follows:
1) Declaration of the subject and resource graphs and

the rule base in the constants and properties clauses.
2) Declaration of the rule ordering structures as vari-

ables.
3) Initialisation of the variables with a sequence of in-

structions, with regards to the dependency between
variables.

4) Declaration of the operations which represent the
different properties we want to verify.

IV. Performance tests
To test our models, we randomly generate graphs and

requests. We control the following parameters: the number
of vertices in the graphs, the number of contexts, the
number of rules and the number of requests. We check
all four properties by varying only one parameter at a
time. For a given value of the parameters, we generate
at least 6 models and compute the average execution time
for checking the properties of the models. The properties
we verify are:

• access: a user can effectively have access to a docu-
ment under a given context;

• hidden data: there is no data completely hidden from
all health workers;

• granting contexts: detection of the contexts which
grant access given a request;

• ineffective rules: detection of the rules that never
affect the result of a request.

For Alloy, each property is verified by running a check or
run command. For ProB, one execution can verify all four
properties at the same time. Tests were performed on a
virtual server (Intel Xeon 3.10GHz) using Java 1.7 with
12GB of RAM. The results presented in Fig 3 show the
outstanding performances of ProB and that the solving
time is constant with regards to the number of contexts,
linear with the number of vertices and exponential with
the number of rules.

V. Related work
RBAC [21], a standardized and well-known access-

control model based on roles, allows for specification of
permissions associated to a role, to execute actions on
resources. The lack of prohibitions and conditions in this
model makes the verification of an access property easier,
since there are no conflicts. However, it has been shown
in [17] that RBAC is inappropriate for fine-grained access
control as found in healthcare requirements like CIUSSS-
Estrie’s (Centre Intégré Universitaire de Santé et de Ser-
vices Sociaux or Integrated University Health and Social
Services Center). RBAC has been formalised in Z [18], [19]
and B [11] where traditional RBAC properties are checked
(role activation, role hierarchy and separation of duty).
OrBAC [6], a logic-based access-control model, intro-

duces the notion of organisation and includes among other
things explicit prohibitions and contexts. A rule can be
defined to be only applicable in specific contexts. Conflicts
are detectable by static checking with the Prolog-based
tool MotOrBAC [3]. OrBAC does not fit our needs since
it does not have an automatised conflict resolution, and
once a static check reveals a conflict, a human intervention
is required to solve it.
XACML [20] is an attribute-based access-control lan-

guage that features prohibitions and conditions, and allows
to determine how conflicts are managed by rule combi-
nation algorithms. As shown in [17], XACML does not
natively support rule inheritance, since it does not include
a graph of subjects or resources; it can be simulated using
paths in resource name, but this complexifies the main-
tenance of a rule base, while providing poor performance
for very large rule bases. XACML has been formalised in
several ways ([2], [9], [16]). These formalisations allow for
access property verification but cannot be reused easily
with our rule ordering.

VI. Conclusion
We have presented an approach to verify four types of

crucial properties for SGAC access control policies using
Alloy and B. B performs significantly better (at least
two orders of magnitude) than Alloy for all properties,
thanks to the ability to control the solving process in ProB

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

So
lv
in
g	
tim

e	
(s
ec
on
ds
)

Alloy ProB

(a) Varying the number of contexts
(30 vertices, 12 contexts)

0

500

1000

1500

2000

2500

3000

3500

0 25 50 75 100

So
lv
in
g	
tim

e	
	(s
ec
on
ds
)

Alloy ProB

(b) Varying the number of vertices
(13 rules, 10 contexts)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

0 20 40 60 80 100 120 140 160

So
lv
in
g	
Ti
m
e	
(s
ec
on
ds
)

Alloy ProB

(c) Varying the number of rules
(100 vertices, 30 contexts)

Fig. 3: Performance test results

by using B operations which allows one to determine an
optimal order in which the constraints are solved, and also
by storing frequently needed results into state variables of
a B machine. Performance results are promising enough
to consider ProB for the verification of real SGAC patient
policies. The verification process is completely automatic.

To the extent of our knowledge, this is the first ex-
periment that uses ProB on large data sets, uses rules
in constraint solving, and uses B operations to guide the
solving process. ProB has been previously used for veri-
fying large data sets of railway parameters, but for some
simpler formulas [15], and for university time tables [8].
Treating rules as objects for a constraint solver is a quite
challenging task, as illustrated by the heavy computation
times of Alloy.

Acknowledgements

We would like to thank M. Leuschel for his help and
reactive support provided for ProB. This research was
funded in part by CIUSSS-Estrie and by NSERC (Natural
Sciences and Engineering Research Council of Canada). In
particular, the authors would like to thank Hassan Diab, of
CIUSSS-Estrie, and Mohammed Ouenzar, of Université de
Sherbrooke, for their contribution in defining SGAC, and
all the SGAC development team at UdeS and CIUSSS-
Estrie.

References

[1] Jean-Raymond Abrial. The B-book - assigning programs to
meanings. Cambridge University Press, 2005.

[2] Jeremy Bryans. Reasoning about XACML policies using CSP.
In SWS ’05: Proceedings of the 2005 workshop on Secure web
services, pages 28–35. ACM Press, 2005.

[3] Frédéric Cuppens, Nora Cuppens-Boulahia, and Céline Coma.
MotOrBAC: un outil d’administration et de simulation de
politiques de sécurité. In Security in Network Architectures
(SAR) and Security of Information Systems (SSI), First Joint
Conference, pages 6–9, 2006.

[4] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an
efficient SMT solver. In 14th Int. Conf. TACAS 2008, volume
4963 of Lecture Notes in Computer Science, pages 337–340,
2008.

[5] Morgan Deters, Andrew Reynolds, Tim King, Clark W. Barrett,
and Cesare Tinelli. A tour of CVC4: how it works, and how to
use it. In IEEE Int. Conf. FMCAD 2014, page 7, 2014.

[6] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania
El Baida, Frédéric Cuppens, Claire Saurel, Philippe Balbiani,
Yves Deswarte, and Gilles Trouessin. Organization based access
control. In IEEE 4th Int. Workshop POLICY 2003, pages 120–
131, 2003.

[7] Jerome Falampin, Hung Le-Dang, Michael Leuschel, Mikael
Mokrani, and Daniel Plagge. Improving railway data validation
with ProB. In Industrial Deployment of System Engineering
Methods, pages 27–43. Springer, 2013.

[8] Dominik Hansen, David Schneider, and Michael Leuschel. Using
B and ProB for Data Validation Projects. In 5th Int. Conf. ABZ
2016, volume 9675 of Lecture Notes in Computer Science, pages
167–182. Springer, 2016.

[9] Graham Hughes and Tevfik Bultan. Automated verification of
access control policies using a SAT solver. STTT, 10(6):503–
520, 2008.

[10] Nghi Huynh, Marc Frappier, Amel Mammar, and Régine
Laleau. http://info.usherbrooke.ca/mfrappier/sgac/.

[11] Nghi Huynh, Marc Frappier, Amel Mammar, Régine Laleau,
and Jules Desharnais. Validating the RBAC ANSI 2012 stan-
dard using B. In 5th Int. Conf. ABZ 2014, Lecture Notes in
Computer Science, pages 255–270, 2014.

[12] Nghi Huynh, Marc Frappier, Herman Pooda, Amel Mammar,
and Regine Laleau. SGAC: A patient-centered access control
method. In 10th IEEE Int. Conf. RCIS 2016, pages 1–12, 2016.

[13] Daniel Jackson. Software Abstractions: Logic, Language and
Analysis. MIT Press, 2012.

[14] Michael Leuschel and Michael J. Butler. ProB: an automated
analysis toolset for the B method. STTT, 10(2):185–203, 2008.

[15] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel
Plagge. Automated property verification for large scale B
models with ProB. Formal Aspects of Computing, 23(6):683–
709, 2011.

[16] Mahdi Mankai and Luigi Logrippo. Access control policies:
Modeling and validation. In 5th NOTERE Conference (Nou-
velles Technologies de la Répartition), pages 85–91, 2005.

[17] Herman Pooda. Évaluation et comparaison des modèles de
contrôle d’accès. Master’s thesis, Université de Sherbrooke,
2015.

[18] David Power, Mark Slaymaker, and Andrew Simpson. On For-
malizing and Normalizing Role-Based Access Control Systems.
The Computer Journal, 52(3):305–325, 2009.

[19] Nafees Qamar, Yves Ledru, and Akram Idani. Validation of
security-design models using Z. In Proceedings of the 13th
international conference on Formal methods and software en-
gineering, ICFEM’11, pages 259–274, Berlin, Heidelberg, 2011.
Springer-Verlag.

[20] Erik Rissanen. eXtensible Access Control Markup Language
(XACML) Version 3.0. OASIS, 2010.

[21] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control model. IEEE
Computer, 29(2):38–47, 1996.

