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ABSTRACT—Smart contracts written using the SOLIDITY
programming language of the ETHEREUM platform are well-
known to be subject to bugs and vulnerabilities, which already
have led to the loss of millions of dollars worth of assets.
Since smart contract code cannot be updated to patch security
flaws, reasoning about smart contract correctness to ensure the
absence of vulnerabilities before their deployment is of the utmost
importance. In this paper, we present a formal approach for
generating correct smart contracts from B specification that
verify safety properties. Our approach consists of two phases:
first a smart contract and its properties are specified and verified
in B, then a set of rules we defined are applied to generate
the correct smart contract code in SOLIDITY. The approach is
implemented in a tool that can generate SOLIDITY contract from
a proven B project. The whole approach is demonstrated by a
case study on the ERC-20 (ETHEREUM Request for Comments 20)
Wrapped Ether (WETH) contract, which is abstractly specified
in B, with invariants stating correctness properties, modeled
checked with PROB for temporal properties, implemented in
B0, proven correct, and automatically translated into a Solidity
contract.

Index Terms—Smart contracts, Solidity, Blockchain, Formal
modeling & verification, B Method, Refinement.

I. INTRODUCTION

In recent years, blockchain technology has garnered sig-
nificant attention from both industry and academia due to
its potential for decentralization, security, and transparency.
Initially introduced through the creation of Bitcoin, blockchain
serves as a distributed and immutable ledger that securely
records transactions in a transparent manner [1]. Unlike con-
ventional systems reliant on trusted intermediaries such as
banks, blockchain employs consensus among nodes to vali-
date and record cryptocurrency transactions. Ethereum, often
regarded as blockchain 2.0, stands out as a pioneering platform
that not only features a cryptocurrency called ether, but also
enables the execution of self-executing programs known as
smart contracts [2].

Smart contracts are self-executing agreements that can be
executed on a blockchain when predetermined conditions
are met. For example, they can automate agreements among
multiple parties, enabling one party to trigger a state change
that, in turn, allows another party to access ether stored
within the smart contract. To create smart contracts, developers

primarily utilize SOLIDITY [3], a Turing-complete high-level
language similar to JavaScript. This SOLIDITY code is then
compiled into Bytecode, a lower-level code, and deployed on
the Ethereum blockchain.

Like any software program, smart contracts are suscepti-
ble to bugs and vulnerabilities, with potentially grave finan-
cial implications [4]. Compounded by the immutability of
blockchain, rectifying post-deployment issues becomes impos-
sible. Ethereum has encountered various attacks and vulner-
abilities resulting in significant losses, such as the infamous
DAO smart contract attack [5], where an attacker exploited
a vulnerability (later known as the reentrancy vulnerability)
within the contract code, stealing over $50 million worth of
ether.

Given these challenges, ensuring the safety and security
of smart contracts before deployment to the blockchain is of
paramount importance. This paper presents an approach to the
formal modeling and verification of SOLIDITY smart contracts
using the formal B method [6]. We adopt a classical approach,
commencing with the definition of an abstract B model. This
abstraction allows for a simpler expression and verification
of smart contract properties and functionalities. The veri-
fication process leverages a range of techniques, including
specification animation, theorem proving and model checking
within the existing B Method toolset. Following successful
verification, the B refinement process is employed to transform
the abstract specification into a more concrete representation,
aligning closely with SOLIDITY data and control structures.
Then, through established translation rules, the entire model
is subsequently translated into SOLIDITY code. The translation
rules are implemented in a tool we developed using ANTLR1

and Jetbrains MPS2.
The remainder of this paper is organized as follows: In

Section II, we begin with an overview of the literature related
to our contribution in the verification of SOLIDITY smart
contracts. Then, in Section III, we present the basic concepts
of the B method and the SOLIDITY language. Section IV de-
scribes our approach to modeling, verifying and implementing

1https://www.ANTLR.org/
2https://www.jetbrains.com/mps/concepts/



SOLIDITY smart contracts, up to the automatic translation of
B0 code (the implementation language of B) into SOLIDITY.
The entire approach is illustrated by a case study concerning
the WETH token smart contract. Section V concludes and
presents some future work.

II. RELATED WORK

Several works precede ours in the analysis, verification,
and modeling of SOLIDITY smart contracts, reflecting diverse
approaches, techniques, and tools. In this section, we provide
an overview of relevant works categorized by the formal mod-
eling and verification techniques they employ: i) SOLIDITY
code/bytecode analysis, ii) SOLIDITY code verification, and
iii) correct-by-construction SOLIDITY code generation.

In the first category, researchers focus on detecting common
code patterns leading to known vulnerabilities (e.g., reen-
trancy, transaction order dependence, timestamp dependence)
using static analysis techniques that examine program artifacts
(e.g., Control Flow Graph, Abstract Syntax Tree). Prominent
examples include the works [7]–[10], which rely on Symbolic
Execution. The tool smartcheck in [11] identifies problematic
patterns using XPath queries, and fuzz testing in [12]–[14]
detects various SOLIDITY vulnerabilities. These approaches
may not explore all program paths, potentially leading to false
negatives. Purely syntactic techniques might not fully account
for operational semantics or execution environment intricacies
[15], compromising the analysis soundness and completeness.

In the second category, researchers translate SOLIDITY code
into formal models and verify properties using various tools
and techniques. Model checking was used in [16], where the
authors use NUSMV to model blockchain applications and to
verify temporal properties in CTL. In [17], Coloured Petri
Nets are used to model and verify smart contract specifications
using LTL properties. Although model checking is employed
in various approaches, its limitation are well known, and
approaches that rely on it, such as [16], [17], often face the
problem of state explosion when dealing with complex or
infinite models [15]. F* is used in [18] to formally verifies
models of smart contracts, analyzing correctness and gas
consumption with tools like Solidity* and EVM*. For now,
this work only considers a restricted subset of SOLIDITY. It is
also worth noting that F* program verification faces challenges
including complexity, and steep learning curve. In [19], an
EVENT-B model generated from SOLIDITY code is used to
formalize smart contracts, the model is then simulated and
verified using the tool PROB3. Notably, the translation process
only considers subset of the SOLIDITY language

In the third category, the focus is on creating correct-
by-construct smart contracts. For instance, in [20], smart
contracts are modeled as FSMs and verified with LTL prop-
erties, later generating SOLIDITY code. The authors of [21]
employ EVENT-B and present a top-down verification and
refinement approach that theoretically generates SOLIDITY

3https://prob.hhu.de/

programs from EVENT-B models, although they did not pro-
vide a concrete implementation or practical demonstration
of their solution. The authors of [22] further explores this
approach, introducing EB2Sol, a tool for modeling, verifying,
and generating SOLIDITY smart contracts. It is worth noting
that this work considers a restricted subset of SOLIDITY and
can only generate sequential programs consisting solely of
assignments statements, without support for conditional (if)
or iterative (while) statements.

Our work falls within the third category. We use the B
method [6] to model and verify SOLIDITY smart contracts.
The B method supports animation and model checking (LTL
and CTL) using ProB4, and theorem proving using Atelier B5.
These tools have an industrial strength and have been routinely
used in safety critical industrial projects for over 25 years [23].
These tools allow one to express and verify complex models
and properties. Developers can perform comprehensive checks
to ensure contract correctness, logical consistency, and avoid
potential deadlocks. Our approach encompasses a broader
subset of the SOLIDITY language, facilitating the modeling
and verification process compared to [22], which does not
cover conditional (if) or iterative (while) statements.

III. BACKGROUND

In this section, we present the main concepts of the B
method and the SOLIDITY language that are relevant for this
paper.

A. The B Method

The B method [6] is a formal method for modeling and
verifying software systems. It is based on set theory and
first-order logic, allowing for the creation of precise and
unambiguous system descriptions. At the most abstract level,
the system is represented by an abstract machine that includes
both the structural aspect, describing system states, and the
behavioral aspect, which describes state evolution.

The structural aspect may define enumerated or abstract
user types in the ’SETS’ clause. It can also declare variables
(resp. constants) in the ’VARIABLES’ (resp. ’CONSTANTS’)
clause, with type specifications in the ’PROPERTIES’ clause
for constants and the ’INVARIANT’ clause for variables,
using first order predicates. Additional properties, like safety
or integrity of the machine state, can be specified in the
’INVARIANT’ clause.

The behavioral aspect comprises the ’INITIALISATION’
clause, which assigns initial values to variables, and the ’OP-
ERATIONS’ clause, used to describe operations that can mod-
ify variable values through simultaneous and possibly nonde-
terministic substitutions. An abstract machine can reference
other machines through various clauses, with different access
rights. The relevant clauses for our purposes are the ’SEES’
and ’INCLUDES’ clauses. The ’SEES’ clause provides read-
only access, whereas ’INCLUDES’ grants additional access,
including the ability to invoke operations. Proof obligations

4https://prob.hhu.de
5https://www.atelierb.eu/



must be discharged to verify invariant preservation through
the execution of operations in the abstract model.

One of the strengths of the B method is its refinement
process that consists in defining successive refinements in
a B model development, each of them adding more detail
and reducing abstraction of the initial abstract machine. The
final stage, B0 implementation, represents a concrete model
that can be automatically translated into C or Ada, and is
subject to constraints (e.g., it can only use concrete data types
and deterministic substitutions), ensuring compatibility with
programming languages like C or ADA (and in our case,
SOLIDITY). An implementation component largely shares the
same clauses as an abstract machine, with some differences.
’VARIABLES’ (resp. ’CONSTANTS’) are replaced by ’CON-
CRETE VARIABLES’ (resp. ’CONCRETE CONSTANTS’),
and an additional ’VALUES’ clause is used to assign values
to implementation constants. The implementation component
can use ’SEES’ to reference an abstract machine, and the
’INCLUDES’ clause is replaced by the ’IMPORTS’ clause,
which disallows read access on variables. The refinement
process generates proof obligations that must be fulfilled
to ensure that the implementation component preserves the
properties of the abstract model.

Table I presents the B elements used in our approach to
specify and generate SOLIDITY programs. x and E denote
a variable and an expression respectively, T and T ′ denote
substitutions, P , G, I are predicates, S and S′ are sets. In
the B method, a substitution is a construct that allows for the
specification of operations.

TABLE I
SUBSET OF RELEVANT B ELEMENTS

B element B Syntax
Enumerated set < enum name > = {Id1, Id2,..,Idn}
Total function type S → S′

Total injective function S ↣ S′

Array type (n..n′) → S

Inclusion S′ ⊆ S

Belongs x ∈ S

Lambda Expression λ x. ( P | E )
Variable declaration VARIABLES v

INVARIANT v ∈ S

Constant declaration CONSTANTS c

PROPERTIES c ∈ S

VALUES c = E

B structure type x ∈ struct(m1 ∈ S, . . . ,mn ∈ S′)
variable declaration
Assignment substitution x := E

Simultaneous substitution T∥T ′

Sequential substitution T ;T ′

Conditional statement IF P THEN T ELSE T ′ END
Precondition substitution PRE G THEN T END
While substitution WHILE P DO T INVARIANT I

VARIANT E END
Var statement : VAR Identifier+ IN
Declares local variable(s) T

in an operation body END

B. Smart Contract and Solidity

The ETHEREUM blockchain defines two primary types
of accounts: External Owned Accounts (EOAs) and Smart
Contract Accounts (SCAs). EOAs are under the control of
blockchain users, each associated with a unique address and
a private key for initiating transactions. In contrast, SCAs are
governed by the immutable code of deployed smart contracts.
Both account types can receive, hold, and send ether. However,
only EOAs can initiate transactions, which can be simple ether
transfers or a call to a smart contract function which can
transfer ether among accounts and also invoke functions of
other smart contracts.

SOLIDITY is the most popular programming language for
ETHEREUM smart contracts. SOLIDITY is a high-level object-
oriented language, based on C++ and JavaScript and is
statically typed. The language supports inheritance, libraries
and complex user-defined types among other features [3]. To
be deployed on the ETHEREUM computing platform EVM
(ETHEREUM Virtual Machine), SOLIDITY code needs to be
compiled into Bytecode. Once the Bytecode is deployed on the
platform, a new smart contract is created and its state (i.e., its
variables and balance of ether) is recorded on the blockchain.
In SOLIDITY, aside from the constructor which is executed
once at the contract deployment, all other functions can serve
as entry points. A function can be called by users or other
smart contracts, and can read and update the smart contract
state. To ensure that the execution of a function terminates,
the initiator of a call pays a fee for its execution, measured in
units of gas.

In our approach, we consider a subset of SOLIDITY which
contains the main components of the language and is general
enough to express useful contracts:

• State variables and constants definitions
• Enumeration type declaration
• Structure type declaration
• Constructor declaration
• Function declaration

We consider the following SOLIDITY types: int (in-
teger), uint (unsigned integer), bool (boolean), address,
bytes, structtype, mapping (A mapping is a set of pairs
(key , value)), enumeration type, and arrays type. There are
types not supported yet, including the contract type, the
function type, and the fixedpointnumbers type.

The type address payable, an extension of the type address,
offers additional methods to a smart contract to transfer ether
to a variable of address payable type. The keyword payable
can also be added to a function signature and denotes that the
function can receive ether from the account of the caller of
the function.

A SOLIDITY function is always invoked and executed
within a context that contains the invocation message (i.e.,
the function called with its parameters), denoted by msg, and
the last block of the blockchain, denoted by block. These
elements are stored in the global name space of SOLIDITY. In



our subset, we consider the following elements of this global
name space:

• msg.sender: denotes the caller of a function, which can
be a user or another smart contract.

• msg.value: denotes the value of ether sent with the
message.

• block.timestamp: denotes the current timestamp in the
blockchain.

• address(this): refers to the address of the current smart
contract denoted by this.

• x.balance: returns the balance of ether of address x.
In a function body, we can find standard programming

statements (Assignment, If and While statements). Addition-
ally, to initiate ether transaction, we consider the SOLIDITY
function a.transfer(m), which sends an amount m of ether
from the contract balance to address a. SOLIDITY also pro-
vides mechanisms for handling conditions and errors inside
a smart contract function. Function revert() stops contract
execution and reverts state changes to its value before the call
to the function. Function require(c) is a conditional revert; it
evaluates a condition c; if c is true, then the function proceeds
normally, otherwise, a revert is executed.

Listing 1 shows a simple code of a SOLIDITY contract
that represents an electronic wallet. The constructor function
sets the owner of the wallet as the sender of the message
msg.sender when the contract is created. The deposit function
allows the owner of the wallet to deposit funds into the wallet,
thanks to its keyword payable which suffices to denote contract
balance update, and thus its body is empty. The withdraw
function allows the owner of the wallet to withdraw an amount
of money, provided that the owner is the sender of the message
and that the amount requested does not exceed the balance of
the wallet.

1 contract SimpleWallet {
2 address payable owner;
3 constructor() payable{owner = msg.sender;}
4 function deposit() public payable {}
5 function withdraw(uint _amount) public {
6 require(msg.sender == owner);
7 require(address(this).balance >= _amount

);
8 owner.transfer(_amount);}
9 }

Listing 1. Example of a SOLIDITY program

IV. MODELING AND VERIFICATION OF SOLIDITY
SMART CONTRACTS

In our approach, illustrated in Figure 1, a SOLIDITY smart
contract is modeled as a B project, where the components of
the smart contract are modeled first as a B abstract machine,
and contract specific properties are expressed and verified
using the B method toolset. The abstract model is then refined
to obtain a B0 implementation. This refined model bridges
the gap between the abstract B representation and the specific
data and control structures of the SOLIDITY programming
language. The final step of our approach is the generation of a
SOLIDITY implementation using a set of transformation rules

Smart contract requirements B Abstract Model

B0 Implementation modelSolidity code

Refinement proof

Property verification: proof and model checking

Automatic
translation

Fig. 1. Process for modeling and verifying a SOLIDITY smart contract

that accurately transforms the refined B0 model. The imple-
mentation of these rules is achieved through a dedicated tool
that uses ANTLR for parsing B specifications and JetBrains
MPS for model-driven development and code generation from
B0 to SOLIDITY. The generated SOLIDITY code inherits the
correctness and reliability established through the B method
formal verification process, providing a solid base ensuring
the correctness of a contract.

The following sections present a more detailed explanation
of our approach, illustrated by a case study concerning the
WETH Token smart contract.

A. Case Study Presentation

Wrapped ether (WETH) is a standardized digital repre-
sentation of ETHEREUM native cryptocurrency, ether, im-
plemented as an ERC-20 token standard6. This tokenization
process enhances compatibility and ease of use within various
ETHEREUM smart contracts. A WETH contract allows users to
deposit ether in a contract. The users can then exchange ether
(represented as WETH tokens) with each other, without the
need of actually transferring ether between their ETHEREUM
accounts. The contract keeps track of the balance of each user,
called the WETH balance, in a similar way as a bank allows its
customers to exchange money between their bank accounts,
without actually moving money around. A user can withdraw
ether from his WETH account. Thus, transfers between WETH
accounts incur lower ETHEREUM transfer gas fees and offer
faster processing times.

The main components of the WETH smart contract are:

• The account variable: variable of type mapping; keeps
track of the WETH balance of all addresses.

• The allowance variable: variable of type mapping; keeps
track of allowances; an allowance is when an address a
allows an address b to transfer an amount of WETH from
a account.

• The deposit function: deposit ether in a user account.
• The withdraw function: withdraw ether from a user

account.
• The transfer function: transfer WETH to another account.
• The approve function: a allows b to transfer WETH up to

a certain limit c (i.e., his allowance) from a account.

6https://ethereum.org/en/developers/docs/standards/tokens/erc-20/



• The transferFrom function: b transfers from a account to
an account c, up to an amount previously allowed to him
by a.

To further demonstrate the adaptability and practicality of
our formal verification approach, we propose an extension
to this contract, where the owner has implemented a new
behavior: a reward system for early adopters. Specifically,
the contract owner offers one WETH token as a reward to
each of the first 100 users who successfully accumulate a
total balance of 100 tokens in their accounts. The purpose
of this new behavior is to demonstrate the ease and flexibil-
ity of implementing functionalities that rely on data control
structures such as IF-THEN-ELSE and WHILE LOOP within
our formal verification framework using the B method. This
demonstration serves as a direct comparison to alternative
approaches, notably those employing EVENT-B, where the
implementation of such behaviors have not been addressed. To
implement this behavior, a new function rewardTopDepositors
is added. This function can only be executed by the manager
of the smart contract, and only once the hundred depositors are
selected. The manager must also deposit an amount of ether
equal to the amount that is distributed to each of the hundred
rewarded depositor.

B. The B Model Architecture of SOLIDITY Smart Contracts

1) Types: Firstly, we define the mapping between
SOLIDITY types and B sets. Among the SOLIDITY types
defined in III-B, some are directly supported in B: uint ≡
NAT or NAT1, int ≡ INT , SOLIDITY arrays ≡ B
arrays (defined as a function), bool (boolean) ≡ BOOL, and
SOLIDITY structure type as B structure type. A SOLIDITY
enumeration type is modeled as a B enumeration set.

For the types not supported in B, we define the following
rules: The SOLIDITY types address, bytes, and string are
modeled as B sets, and defined in a machine called Solid-
ity Types. While bytes and string are modeled as abstract
sets, address is modeled as an enumerated set containing
the values THIS, representing the modeled smart contract
address value, and addr 0, representing the null address
value. The Solidity Types also defines the constant USERS,
which represents a subset of the set address excluding the
values THIS and addr 0. The machine Solidity Types will be
referenced by other components using SEES links. Lastly, for
each variable of type mapping, a B abstract machine is defined
and included/imported in the B abstract/implementation model
of a smart contract. Such a machine represents the mapping
variable, and it defines a variable of type total function, whose
domain represents the keys, and range represents the values.
The machine also contains the standard operations of the
mapping type for inserting and reading pairs.

2) Contract Function Specification: The constructor of a
contract is modeled as the initialisation substitution of a B ma-
chine, and functions are modeled as operations. Implicit func-
tion parameters msg.sender, msg. value, and block.timestamp
are modeled as input parameters of a B operation. These
parameters are appropriately typed and included among other

potential input parameters in the B precondition substitution.
To specify the behavior of a contract function, we use a B
substitution IF C THEN T END. Condition C is the condition
under which the contract function successfully terminates.
Substitution T defines the state changes. In the translation
process to Solidity, we add an ELSE revert() END statement
within this top-level IF statement to ensure that the state is
reverted to its value before the call when C is not satisfied.
Thus, a contract function f(T1 p1, . . . , Tn pn) is specified in
the following form:

f(msg sender,msg value, p1, . . . , pn) =
PRE msg sender ∈ USERS ∧msg value ∈ NAT1 ∧

p1 ∈ T1 ∧ . . . ∧ pn ∈ Tn THEN
IF C THEN T END

END

Note that in the B world, this is known as a defensive operation
specification style, which differs from the traditional offensive
style of the form f(p⃗) = PRE Typing Condition of p⃗ ∧ C
THEN S END. In B, when an operation f is called, the calling
machine must prove that C is satisfied, thus preventing from
having to check C in the implementation of f . In our case,
there is no other machine that calls our B specification of a
contract. Thus, we must establish with the specification of f
what happens when C is not satisfied. At the abstract level,
when C is not satisfied on a call, an implicit SKIP substitution
is executed, which leaves the state unchanged. We model this
in the implementation by using a call to the revert function.

3) ETHEREUM Platform Modeling: To model the transfer
and x.balance SOLIDITY platform functions, which can be
used in a number of machines (or implementations) in a
B project, we have introduced an abstract machine named
Platform. This machine can be included (resp. imported) in
abstract machines (resp. implementations) of the B project,
leveraging B specification modularization. Within Platform,
the solidity expression x.balance is defined by the variable
balanceOf, a total function associating each address with its
ether balance. Platform also defines the transfer operation with
three input parameters: sender address, receiver address,
and transfer amount, along with two essential preconditions.
The preconditions validate (1) the existence and distinction of
sender and receiver addresses and (2) that the sender balance
is greater or equal to the transfer amount. Additionally, it
also defines the get balanceOf(x) operation, which retrieves
an address ether balance.

The B project modeling the WETH smart contract contains
initially 3 machines: (1) The Solidity Types machine, (2) the
Platform machine and (3) the abstract machine represent-
ing the WETH smart contract. To model the two variables
account and allowance of type mapping, two additional
machines account and allowance are created and included
in the abstract model of the WETH smart contract. Each of
these two machines contains a variable of type total func-
tion, named (resp.) accountOf and allowanceOf , where
accountOf is typed as ADDRESS → NAT, and allowanceOf
is typed as ADDRESS → (ADDRESS → NAT). Each ma-



chine also contains two operations; one to insert new val-
ues: set accountOf and set allowanceOf, and another to read
values: get accountOf and get allowanceOf. We use nam-
ing rules get ⟨variable name⟩ and set ⟨variable name⟩ to
define mapping machines operations that read (resp. insert)
a pair (k, v) in the mapping. Similarly, another operation
set accountOf abstract inserts a set of pairs (k, v) instead of
a single pair.

4) B Abstract Specification of the WETH Contract: We
specify the operations deposit, withdraw, transfer, approve,
and transferFrom. Each operation changes the state of the
machine by modifying the values of the variables account
and allowance. They also define conditions for their execution
expressed as a B IF substitution that encompasses the body of
the operation. For example, one of the conditions to trigger
the withdraw operation is that the sender (input parameter
msg sender) account must own an amount of tokens greater
than or equal to the amount being withdrawn. Additionally,
the B method imposes the definition of well-definedness
conditions. These conditions ensure, for example, that when
an arithmetic expression is used, it must be proven that the
operands and the result belong to the defined domain of the
operator in B.

To implement the rewarding system, three additional vari-
ables have been introduced. (1) depositors: This is a subset of
the address set, containing users who qualify for the reward
system. Users are added to this subset if their total token
balance exceeds one hundred. (2) manager: This variable rep-
resents the contract manager address. (3) donated: A Boolean
indicating whether the reward has been distributed or not.
The rewardTopDepositors operation can be invoked by the
manager once the specified conditions are met. This operation
distributes rewards among the address values stored in set
depositors.

Listing 2 shows an excerpt of the abstract machine WETH

1 MACHINE Weth
2 SEES Solidity_Types
3 INCLUDES Platform, account, allowance
4 CONSTANTS threshhold
5 PROPERTIES threshold ∈ NAT
6 VARIABLES manager, depositors, donated
7 INVARIANT
8 depositors ⊆ ADDRESS ∧
9 manager ∈ USERS ∧

10 donated ∈ BOOL ∧
11 balanceOf(THIS) ≥
12 (Σ(ct).(ct ∈ dom(accountOf)| accountOf(ct))) ∧
13 card(depositors) ≤ threshold
14 INITIALISATION
15 ...
16 OPERATIONS
17 deposit(msg_sender, msg_value) =
18 PRE
19 msg_sender ∈ USERS ∧ msg_value ∈ NAT1
20 THEN
21 IF balanceOf(msg_sender) - msg_value ∈ NAT ∧
22 accountOf(msg_sender) + msg_value ∈ NAT ∧
23 balanceOf(THIS) + msg_value ∈ NAT
24 THEN
25 transfer(msg_sender, THIS, msg_value) ||
26 set_accountOf(msg_sender, accountOf(msg_sender)+

msg_value) ||

27 IF accountOf(msg_sender) + msg_value
28 ≥ threshold ∧
29 msg_sender ̸∈ depositors ∧
30 card(depositors) < threshold
31 THEN
32 depositors := depositors ∪ {msg_sender}
33 END END END
34 ;
35 rewardTopDepositors(msg_sender, msg_value) =
36 PRE
37 msg_sender ∈ USERS ∧ msg_value ∈ NAT
38 THEN
39 IF msg_value = threshold ∧
40 msg_sender = manager ∧
41 card(depositors) = threshold ∧
42 donated = FALSE ∧
43 balanceOf(THIS) + msg_value ∈ NAT ∧
44 balanceOf(manager) - msg_value ∈ NAT ∧
45 ∀xx.(xx ∈ depositors => accountOf(xx) + 1 ∈ NAT)
46 THEN
47 transfer(manager, THIS, msg_value) ||
48 set_accountOf_abstract(λ xx. (xx ∈ depositors |

accountOf(xx) + 1)) ||
49 donated := TRUE
50 END END;
51 ...
52 END

Listing 2. Excerpt of abstract machine WETH AM

C. Verification of B Models of Smart Contracts

Formal verification is an important step of our approach. It
ensures that the B model captures all the desired behavioral
aspects and satisfies its safety properties ensuring its correct-
ness, and this using the formal verification techniques of the
B method. For our case study, it means to make sure that the
abstract modeling of the WETH token captures all the desired
behaviors such as token issuance, transfers, and ownership
management. For this purpose, the ATELIER B [24] theorem
prover can be used to discharge proof obligations associated
with invariant preservation. The PROB model checker7 can be
used to animate/model check B model. It can exhibit some
missing preconditions related to operation calls or discover
problems, such as invariant violations or deadlocks. PROB also
allows for the verification of temporal properties expressed as
LTL or CTL formulae.

In our model, a property we want to verify is that the
ether balance of the model (represented by balanceOf(THIS))
remains greater or equal to the total supply of tokens (sum
of all values in the mapping variable accountOf ) during
conversions between ether cryptocurrencies and WETH Tokens:

balanceOf(THIS) ≥
∑

ct∈dom(accountOf)

accountOf(ct)

Proving the abstract B machines with ATELIER B generates
121 proof obligations, of which 111 are automatically proved
by the ATELIER B provers, and 10 had to be proved interac-
tively.

Another property that we checked is that the contract
doesn’t reach a deadlock state, in which case users would be
prevented from depositing and withdrawing their ether. This

7https://prob.hhu.de/



property cannot be verified using ATELIER B; we use instead
the PROB model checker. We can also use PROB to simulate
the model. The simulation starts by defining an initial state.
Then, we can execute the operations if their preconditions are
satisfied, and validate whether the model behavior is consistent
with the requirements.

Temporal properties can also be expressed and verified using
PROB. For instance, we can verify that at all times, if an
address has a token balance greater than 0, then the operations
withdraw and transferTo are enabled. This property is formally
expressed as the following PROB LTL formula:

G({∃(x).(x ∈ dom(accountOf) ∧ accountOf(x) > 0))}
⇒ e(withdraw) ∧ e(transferTo))

where the curly brackets {...} are used to express a B predicate,
and e(Op) denotes that the operation Op is enabled.

Furthermore, beyond the scope of contract-specific proper-
ties verification, our approach also implements precautionary
measure to address the reentrancy attack. This type of attack
occurs when a victim contract initiates a call or ether transfer
to a malicious contract, which subsequently triggers repeated
and recursive calls back to a function within the victim
contract before the initial call completes, which may cause
the different invocations to interact in destructive ways with
the victim contract. To preempt such detrimental behavior,
our strategy involves the modeling and translation of the
ether exchange function, specifically by opting to employ the
SOLIDITY transfer function. Notably, the transfer function is
adept at mitigating the risk of reentrancy due to its inherently
limited allocation of gas. This allocation, sufficient for only
a single call, effectively blocks potential recursive invocations
and protects the contract against reentrancy-based exploits.

D. Refinement of the B Models

The B refinement process is used to gradually transform
an abstract specification into a more concrete one, closer to
SOLIDITY data and control structures. Each step of the process
generates proof obligations, that need to be discharged to
ensure the preservation of properties.

For our case study, we have developed an implementation
machine, shown in Listing 3, that refines the B abstract
model of the WETH token. This implementation machine,
named WETH_i, imports the machines: Platform, account,
and allowance. Within WETH_i, we redefine the operations
established in the abstract model. These re-definitions must
adhere to our current B translatable subset, which includes
the set of expressions and conditions of the B implementation
language subsets, along with the assignment, the conditional,
the loop and the VAR-IN instructions.

At the implementation level, variables and constants of the
abstract model are replaced with new concrete ones, and a
gluing invariant is added to define a relationship between the
abstract variables/constants and their concrete counterparts.
For example, the set depositors of the abstract machine is re-
placed by two variables: (1) array depositors i which contains
the depositors; (2) variable index of type NAT , which denotes

the number of depositors currently stored in array depositors i.
Consequently, the invariant ’index = card(depositors)’ (line
16) equates the value of the implementation variable index to
the size of the set depositors in the abstract machine, and the
invariant ’depositors i[0..index−1] = depositors’ (line 17)
defines the relation between the content of this set depositors
and the range of the concrete array depositors i. Variable
depositedOver100, declared in machine depositedOver100, is
a mapping from address to boolean; it serves as an indicator
to track whether a qualifying user address has already been
added to the depositors i array, preventing duplicate entries. It
avoids looping over array depositors i in operation deposit to
find out if a depositor has already been added. It implements
the condition of line 29 in Listing 2. Since it is not possible
to loop over a SOLIDITY mapping, the array depositors i
is still needed in function rewardTopDepositors to loop over
depositors to transfer funds to them. This example shows how
consistency between dependent variables can be proved in
the implementation. Here, variables depositors i and deposite-
dOver100 contain the same information (lines 17 and 19), and
the implementation invariant ensures that it is consistent with
the abstract variable depositors (line 19).

Some expressions of the B abstract machine language
cannot be used in B0, like the condition ∀x.x ∈ depositors ⇒
accountOf(x) + 1 ∈ NAT in the abstract operation reward-
TopDepositors, because it uses a universal quantifier ∀. They
must be implemented using concrete constructs like the loop
from lines 61 to 72 of Listing 3.

1 IMPLEMENTATION B_weth_i
2 REFINES B_weth
3 SEES Solidity_Types
4 IMPORTS Platform, account, allowance,

depositedOver100
5 CONCRETE_CONSTANTS threshold_i
6 PROPERTIES threshold_i ∈ NAT ∧ threshold_i =

threshold
7 VALUES threshold_i = 100
8 CONCRETE_VARIABLES manager_i, depositors_i, index,

donated_i
9 INVARIANT

10 // TYPING INV
11 index ∈ NAT ∧ index>=0 ∧
12 donated_i ∈ BOOL ∧
13 depositors_i ∈ 0..threshold_i → ADDRESS ∧
14 manager_i ∈ USERS ∧ manager_i = manager ∧

donated_i = donated ∧
15 // GLUING INV
16 index = card(depositors) ∧
17 depositors_i[0..index-1] = depositors ∧
18 (0..index-1) <| depositors_i : 0..index-1 ↣

depositors ∧
19 depositedOver_100˜[{TRUE}] = depositors
20 INITIALISATION
21 index := 0;
22 depositors_i := (0..threshold_i) * {addr_0};
23 ...
24 OPERATIONS
25 deposit(msg_sender, msg_value) =
26 BEGIN
27 VAR senderBalance, senderAccount, thisBalance IN
28 senderAccount <-- get_accountOf(msg_sender);
29 senderBalance <-- get_balanceOf(msg_sender);
30 thisBalance <-- get_balanceOf(THIS);
31 IF thisBalance + msg_value ≤ MAXINT ∧



senderBalance - msg_value ≥ 0 ∧ senderAccount
+ msg_value ≤ MAXINT

32 THEN
33 set_accountOf(msg_sender, senderAccount +

msg_value);
34 transfer(msg_sender, THIS, msg_value);
35 VAR distinct IN
36 distinct <-- get_depositedOver_100(msg_sender);
37 IF senderAccount + msg_value ≥ threshold_i ∧

distinct = FALSE ∧ index < threshold_i
38 THEN
39 depositors_i(index) := msg_sender;
40 set_depositedOver_100(msg_sender, TRUE);
41 index := index +1
42 END END END END END
43 ;
44 rewardTopDepositors(msg_sender, msg_value) =
45 BEGIN
46 VAR thisBalance, managerBalance IN
47 thisBalance <-- get_balanceOf(THIS);
48 managerBalance <-- get_balanceOf(manager_i);
49 IF msg_value = threshold_i ∧
50 msg_sender = manager_i ∧
51 index = threshold_i ∧
52 donated_i = FALSE ∧
53 thisBalance + msg_value ≤ MAXINT ∧
54 managerBalance - msg_value ≥ 0
55 THEN
56 VAR jj, safe IN
57 //* jj ∈ NAT
58 //* safe ∈ BOOL
59 jj := 0;
60 safe := TRUE;
61 WHILE jj < index ∧ safe = TRUE DO
62 VAR depositorBalance IN
63 depositorBalance <-- get_accountOf(

depositors_i(jj));
64 safe := bool(depositorBalance + 1 ≤ MAXINT);
65 jj := jj+ 1
66 END
67 INVARIANT 0≤index ∧ jj≤index ∧ jj≥0 ∧
68 safe = bool(∀xx.(xx ∈ ran((0..jj-1) <|

depositors_i) => accountOf(xx) + 1 ∈ NAT))
∧

69 donated_i= FALSE ∧
70 ∀xx.(xx ∈ ran((0..jj-2) <| depositors_i) =>

accountOf(xx) + 1 ∈ NAT)
71 VARIANT index - jj
72 END;
73 IF (safe=TRUE) THEN
74 transfer(msg_sender, THIS, msg_value);
75 donated_i := TRUE;
76 VAR ii, depositorBalance IN
77 //* ii ∈ NAT
78 //* depositorBalance ∈ NAT
79 ii := 0;
80 WHILE ii < index DO
81 depositorBalance <-- get_accountOf(

depositors_i(ii));
82 set_accountOf(depositors_i (ii),

depositorBalance + 1);
83 ii := ii+ 1
84 INVARIANT ii=threshold_i or ii∈ dom(

depositors_i) ∧
85 accountOf =
86 accountOf$0<+(λxx. (xx ∈ depositors_i[0..(ii

-1)] | accountOf$0(xx) + 1)) ∧
87 threshold_i = threshold ∧
88 donated_i = TRUE ∧ safe= TRUE ∧
89 depositors_i[0..(ii-1)]<∈ depositors ∧
90 jj=index ∧
91 ∀xx.(xx ∈ ran((ii+1..index-1) <| depositors_i)

=> accountOf(xx) + 1 ∈ NAT)
92 VARIANT index - ii

93 END END END END END END END
94 ...
95 END

Listing 3. Excerpt of the Implementation component WETH IM

E. B to Solidity Translation

The final part of our approach is the transformation of the B
project into SOLIDITY code. For that purpose, we defined a set
of translation rules, which have been implemented in a ded-
icated tool created with JetBrains MPS. The translation rules
take into account both the implementation component and the
initial abstract model, since some necessary information are
inherited by refinement, and they must be retrieved from the
abstract machine, or some of its refinements. For instance,
in the abstract model, the precondition substitution ’PRE G
THEN T ’ of an operation serves to define typing predicates
of operation parameters. This substitution is discarded in the
implementation component because the caller of an operation
(i.e., another B machine) must prove that the precondition of
the called operation is satisfied when it is called. Thus, the
translation rules retrieve the typing predicates from the abstract
model to generate input parameters of functions. Other sub-
stitutions of operations (i.e. assignment, conditional and loop
substitutions) are directly translated from the implementation
component into their equivalent SOLIDITY statement. Table
II shows an excerpt of the translation rules. The other B0
constructs are easily translated into their equivalent SOLIDITY
constructs (assignment, if-then-else, loop, variable declara-
tion).

TABLE II
EXCERPT OF THE TRANSLATION RULES B TO SOLIDITY.

B construct Solidity Language
Implementation M contract M{ }
CONCRETE CONSTANTS c
PROPERTIES c ∈ S [[S]] constant c = E
VALUES c := E
CONCRETE VARIABLES v [[S]] v;
INVARIANT v ∈ S
INITIALISATION T constructor() { [[T ]] }
op name (input params) = function fun name
BEGIN T END (input params) public

{ [[T ]] }

The SOLIDITY payable keyword is not explicitly repre-
sented in the B architecture; it is generated during the trans-
lation. If an operation receives ether by calling the opera-
tion transfer of machine Platform, the equivalent function
generated in the translation will have the keyword payable
added in its signature. Also, variables that are used in the to
parameter of a transfer operation call are casted as address
payable. For example, if the B model initiates a transfer of
an amount m to an address variable dst, the variable will
be translated with a quick cast to the type address payable:
payable(dst).transfer(m) in order to use the transfer function
of SOLIDITY.

Any imported machine within the implementation compo-
nent, with the exception of Platform, corresponds to a mapping



variable and is translated as such in SOLIDITY. The types of
both the domain and range of the mapping contained within
the machine are translated to their respective SOLIDITY types,
as described in Section IV-B. Listing 4 shows an excerpt of
the SOLIDITY code generated.

1 contract Weth
2 {
3 mapping (address => uint) private accountOf;
4 mapping (address => mapping (address => uint))

private allowanceOf;
5 mapping (address => bool) private depositedOver_100;
6 address[] private depositors;
7 ...
8
9 constructor (){ manager = msg.sender; donated =

false; index = 0;}
10
11 function deposit ( ) payable public {
12 uint senderAccount = accountOf[msg.sender];
13 uint senderBalance = msg.sender.balance;
14 uint thisBalance = address(this).balance;
15 if ( thisBalance+msg.value<=type(uint).max &&
16 senderAccount+msg.value<=type(uint).max &&
17 senderBalance >= msg.value)
18 {
19 accountOf[msg.sender] = senderAccount+msg.value;
20 bool distinct = depositedOver_100[msg.sender];
21 if ( senderAccount+msg.value>=threshold&&

distinct==false&&index<threshold ){
22 depositors.push(msg.sender);
23 depositedOver_100[msg.sender] = true;
24 index = index+1;
25 }
26 }
27 else { revert();}
28 }
29 function rewardTopDepositors ( ) payable public {
30 uint thisBalance = address(this).balance;
31 uint managerBalance = manager.balance;
32 if ( msg.value==threshold&&msg.sender==manager &&
33 index==threshold&&donated==false &&
34 thisBalance+msg.value<=type(uint).max &&
35 managerBalance-msg.value>=0 )
36 {
37 uint jj; bool safe; jj = 0; safe = true;
38 while(jj<index&&safe==true){
39 uint depositorBalance = accountOf[depositors[

jj]];
40 safe = depositorBalance+1<=type(uint).max;
41 jj = jj+1;
42 }
43 if ( ( safe==true ) ){
44 donated = true; uint ii; ii = 0;
45 while(ii<index){
46 uint depositorBalance =
47 accountOf[depositors[ii]];
48 accountOf[depositors[ii]] = depositorBalance

+1;
49 ii = ii+1;
50 }}}
51 else { revert();}
52 }
53 ...
54 }

Listing 4. Excerpt of SOLIDITY code generated from the B WETH token
model project

The Solidity code generated may include conditions within
the main IF clause and other code snippets that are implicitly
checked by the ETHEREUM virtual machine. In the B abstract
machine, these conditions are needed to prove the preser-

vation of the machine invariant, to ensure safety properties.
They must be preserved by the B0 implementation and thus
appear in the B0 code. For instance, verifying the sender
cryptocurrency balance for an Ether transfer and preventing
overflow or underflow in integer calculations are implicitly
checked in ETHEREUM. As an example, consider line 17 in
Listing 4, which checks that the sender balance is greater than
or equal to the amount sent. This line is superfluous because
the ETHEREUM platform disallows transfers with insufficient
funds. These conditions and statements could be eliminated
using optimization rules, which we have not done yet.

Currently, our tool lacks a built-in type checker to evalu-
ate the types of certain components in a B implementation
when their types are not explicitly defined. To address this
limitation, we have introduced a temporary rule in which we
explicitly define the types of these components by adding a
comment with the following syntax: //* variable_name
: type. This approach is a temporary solution. We are
actively working on the development of a comprehensive type
checker for future tool enhancements.

We can as a final step manually check that the same
scenarios executed on the B model, using PROB, and the
generated SOLIDITY program give the same traces. We use
Remix IDE [25], an open source web application that offers
an environment for simulating the ETHEREUM blockchain,
and used for the development and testing of SOLIDITY
smart contracts. Through Remix, we can compile, deploy the
generated SOLIDITY code, and simulate execution scenarios
of smart contracts. The translation tool and the B proven
project associated to this case study can be found in [26]. The
implementation generated 131 proof obligations, of which 46
had to be proved interactively.

V. CONCLUSION AND FUTURE WORK

This paper proposes a comprehensive approach to develop
formally verified SOLIDITY smart contracts using the B formal
method. We propose a specific B modeling for a SOLIDITY
smart contract taking into account a subset of SOLIDITY and
EVM domain variables and functions. We adopt a classical
approach, starting from an abstract model to specify the
behavior of a contract and its safety properties that needs
to be preserved during its execution. The model can be
verified, animated and validated using the whole range of tools
that support the B method. Finally, after refinement of the
abstract machine, the model can be translated into SOLIDITY
using the rules we defined and implemented in a tool using
Jetbrains MPS. The correctness of our translation rules from
B0 to SOLIDITY is straightforward to establish, since we are
using simple constructs and simple types whose semantics
are the same in B0 and in SOLIDITY. In future works, we
plan to extend our framework in multiple directions: first
by expanding the SOLIDITY subset considered, for instance,
function calls between contracts, and use our approach in the
other direction, that is, generate a B abstract machine from a
SOLIDITY program to prove properties about it.
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