
Proving Local Invariants in ASTDs⋆

Quelen Cartellier1, Marc Frappier1[0000−0002−4402−2514], and Amel
Mammar2[0000−0003−0016−6898]

1 GRIC, Université de Sherbrooke, Sherbrooke, J1K2R1 Quebec, Canada
{Quelen.Cartellier,Marc.Frappier}@USherbrooke.ca

2 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris
91120 Palaiseau, France

amel.mammar@telecom-sudparis.eu

Abstract. This paper proposes a formal approach for generating proof obliga-
tions to verify local invariants in an Algebraic State Transition Diagram (ASTD).
ASTD is a graphical specification language that allows for the combination of
extended hierarchical state machines using CSP-like process algebra operators.
Invariants can be declared at any level in a specification (state, ASTD), foster-
ing the decomposition of system invariants into modular local invariants which
are easier to prove, because proof obligations are smaller. The proof obligations
take advantage of the structure of an ASTD to use local invariants as hypothe-
ses. ASTD operators covered are automaton, sequence, closure and guard. Proof
obligations are discharged using Rodin. When proof obligations cannot be proved,
ProB can be used to identify counter-examples to help in correcting/reinforcing
the invariant or the specification.

Keywords: ASTD, invariant, proof obligation, Rodin, ProB

1 Introduction and Related Work

ASTD [6,12] is a graphical notation that combines process algebra operators and hi-
erarchical state machines. It is particularly well-suited for specifying monitoring sys-
tems, like intrusion detection systems [4,18] and control systems [1,5]. ASTD allows
for the combination of state transition diagrams (Statecharts-like) with process alge-
bra operators, drawn from CSP. Hence, ASTD takes advantage of the strengths of both
notations: graphical representation, hierarchy, orthogonality, compositionality, and ab-
straction. Statecharts-like notations offer only two operators for decomposing behavior,
OR and AND states. ASTDs support these two operators (OR is represented by ASTD
automaton; AND is represented by the flow operator), and it supports most of CSP’s
operators. ASTDs differ from these notations by using simpler communication mecha-
nisms. ASTDs can communicate through shared state variables or through synchroni-
sation. Statecharts’ broadcast communication is not supported.

In order to promote the use of ASTDs for modeling safety critical systems, it is cru-
cial to have the ability to prove safety properties like invariants. Indeed, designing an
ASTD specification is an error-prone task, e.g., invariants of states can be incorrect.
⋆ This work was supported by the ANR projet DISCONT, Public Safety Canada and NSERC

2 Q. Cartellier et al.

Model-based methods like B and Event-B offer powerful environments for proving in-
variants on formal specifications using refinement. But still, proving global invariants
on these systems is hard [9,10]. A translation of ASTDs to B and Event-B has been
proposed [11,5]. Global invariants which are associated to all states of the system can
be declared and proof obligations are then generated to ensure that each event preserves
the invariants. These proof obligations are hard to discharge for large specifications, due
to the encoding of ASTD operators that introduces several control variables. Moreover,
it does not support local invariants which are associated to some states in the system. In
[1], it has been shown that the algebraic approach of ASTDs streamlines the modulari-
sation of a large specification.

Several works have addressed the specification and verification of invariants in State-
charts-like notations (e.g., [7,13,14]), but only [17,16] have addressed the proof of in-
variants; others are targeting model checking or assertions for run-time verification.
Model-checking is often limited by state explosion (e.g., [9,10]) for large specifications,
whereas run-time verification is not satisfactory for safety-critical system, as it offers no
insight on system correctness before deployment.

To overcome the limitations of [11,5], we propose in this paper to generate proof
obligations for invariant preservation directly from an ASTD specification, in order to
reduce proof complexity and make the traceability between the ASTD invariants and
the produced proof obligations straightforward. An invariant can be declared by the user
at any level in the specification (from complex ASTDs to elementary states of an au-
tomaton). Our work differs from [17] by permitting invariants on elementary automaton
states, an important feature for critical control systems, and by supporting invariants for
complex ASTDs, which amounts to supporting invariant for complex process expres-
sions, since complex ASTDs are defined using process algebra operators. UML-B [16]
supports invariants on classes and traditional states machines; a UML-B specification
is translated into Event-B, and thus invariants are represented globally in the resulting
Event-B machine. Our POs are local to a state, and thus simpler. They are represented
as theorems of an Event-B context, and can be discharged using Rodin3 and debugged
using ProB [8], which are two industrial strengths tools supporting the B and Event-B
methods.

The rest of this paper is structured as follows. Section 2 introduces a subset of the
ASTD notation and its semantics. Section 3 defines the proof obligations and illustrates
them on a small example. Section 4 concludes the paper.

2 Overview of the ASTD notation

The ASTD notation includes several ASTD types, which are Elem, Automaton, Se-
quence, Kleene closure, Guard, Choice, Parameterized Synchronization, Flow, Quan-
tified choice, Quantified synchronization and Call. In this paper, we consider only the
first five types. Figure 1 illustrates a simple but representative ASTD specification that
is used to illustrate our approach throughout this paper. ASTDs A and C are of type
Kleene closure. ASTD B is of type Sequence, and it executes ASTDs C and E in se-
quence. ASTD E is of type Guard. ASTDs D and F are of type Automaton. Automaton

3 http://www.event-b.org/

2. OVERVIEW OF THE ASTD NOTATION 3

Fig. 1. ASTD Case study

states S0 , S1 , S2 , S3 are ASTDs of type Elem. ASTD A is a Kleene closure that allows
for iteration on ASTD B . B executes C and D in sequence: when C reaches the final
state S1 , E is enabled to execute the event e2, to move from S2 to S3 . Since C is a
Kleene closure, it can trigger a new iteration of D when it is in the state S1 , and execute
the event e1 from the initial state S0 . When F is in the final state S3 , A can also trigger
a new iteration of B and execute the event e1 from S0 . Here is a possible trace of this
specification:

[e1, e1, e1, e2, e3, e2, e1,…]

ASTD types are organised into a type hierarchy. Specific ASTD types inherit from
the top-level type ASTD, which introduces three general fields ⟨𝑛, 𝑉 , I⟩, where 𝑛 is the
name of the ASTD, 𝑉 is a set of attributes and I an invariant associated to all states of
the ASTD. These properties are inherited by all ASTD types. We refer to a field 𝑝 of an
ASTD 𝑎 ∈ ASTD using the notation 𝑎.𝑝. Attributes 𝑎.𝑉 are variables that are initialised
𝑎 and modified in 𝑎 or in its sub-ASTDs. For instance, an attribute declared in A can be
modified in B , C , D , E , F . The invariant 𝑎.I is a first-order logic formula on 𝑎.𝑉 and on
the attributes of its super-ASTDs. For instance, the invariant F.I can refer to attributes
A.𝑉 ,B.𝑉 ,E.𝑉 and F.𝑉 . Table 1 provides the main elements of these ASTDs. If 𝑎 is an
elementary state, then 𝑎.I applies only to this state. But if 𝑎 is a complex ASTD, then
𝑎.I should be fulfilled by all sub-ASTDs of 𝑎.

The execution of an ASTD is defined by a labeled transition system using a Plotkin-
like operational semantics. The set of states is denoted by State. Each type of ASTD
comes with its own type of states, but each state type has a property 𝐸 ∶ Var → Term
which represents the values of attributes declared in the ASTD. Some states may be
final and enable subsequent ASTDs to start. Final states of an ASTD 𝑎 are determined
by the Boolean function final of type ASTD × State → Boolean. Function init of type
ASTD × (Var → Term) → State returns the initial state of an ASTD. In the sequel,
we use some mathematical operators from the B notation; their definition is given in
Table 3.

2.1 Automaton

The ASTD type Automaton is built on a set of states related by transitions. It has the
following structure: ASTD Automaton =̂ ⟨ aut, Σ, 𝑆, 𝜈, 𝛿, SF, DF, 𝑛0 ⟩ where Σ ⊆ Event
is the alphabet and 𝑆 ⊆ Name is the set of state names. 𝜈 ∈ 𝑆 → ASTD maps each state

4 Q. Cartellier et al.

ASTD Attributes Initialisation Invariant Guard
A 𝑥𝐴 𝑥𝐴 ∶= 0 𝑥𝐴 ≥ 0
B 𝑥𝐵 𝑥𝐵 ∶= 𝑥𝐴 + 1 𝑥𝐵 > 0
C 𝑥𝐶 𝑥𝐶 ∶= 0 𝑥𝐵 ≥ 𝑥𝐴
D 𝑥𝐷 𝑥𝐷 ∶= 𝑥𝐶 + 1 𝑥𝐷 ≥ 0
E 𝑥𝐸 𝑥𝐸 ∶= 𝑥𝐴 𝑥𝐸 ≥ 0 ∧ 𝑥𝐸 < 𝑥𝐵 ∧ 𝑥𝐸 ≤ 𝑥𝐴 𝑥𝐵 > 𝑥𝐴 + 4
F 𝑥𝐹 𝑥𝐹 ∶= 0 𝑥𝐹 ≥ 0
S0 𝑥𝐷 > 𝑥𝐶 ∧ 𝑥𝐶 ≥ 0
S1 𝑥𝐶 ≥ 𝑥𝐷 ∧ 𝑥𝐴 > 0
S2 𝑥𝐹 = 0 ∨ 𝑥𝐴 > 𝑥𝐸
S3 𝑥𝐹 > 0 ∧ 𝑥𝐴 > 𝑥𝐸

Table 1. Properties of ASTDs in Fig. 1

Event Guard Action
e1 𝑥𝐶 ∶= 𝑥𝐶 + 𝑥𝐷; 𝑥𝐵 ∶= 𝑥𝐵 + 𝑥𝐶 ; 𝑥𝐴 ∶= 𝑥𝐴 + 1
e2 𝑥𝐴 ∶= 𝑥𝐴 + 𝑥𝐵; 𝑥𝐹 ∶= 𝑥𝐹 + 1
e3 𝑥𝐴 < 10000 𝑥𝐴 ∶= 𝑥𝐴 − 𝑥𝐸

Table 2. Transitions of ASTDs in Fig. 1

Description Expression Definition
domain antirestriction 𝑆 �− 𝑟 {𝑥 ↦ 𝑦 ∣ 𝑥 ↦ 𝑦 ∈ 𝑟 ∧ 𝑥 ∉ 𝑆}
range antirestriction 𝑟 �− 𝑆 {𝑥 ↦ 𝑦 ∣ 𝑥 ↦ 𝑦 ∈ 𝑟 ∧ 𝑦 ∉ 𝑆}

override 𝑟1 �− 𝑟2 (𝖽𝗈𝗆(𝑟2) �− 𝑟1) ∪ 𝑟2
Table 3. Definitions of B operators

to its sub-ASTD, which can be elementary (noted Elem) or complex (i.e., of any ASTD
type). An automaton transition from 𝑛1 to 𝑛2, labelled with 𝜎[𝑔]∕𝐴𝑡𝑟, is represented in
the transition relation 𝛿 as follows: 𝛿(𝜂, 𝜎, 𝑔, 𝐴𝑡𝑟, final?). Symbol 𝜂 denotes the type of
the transition. In this paper, we consider simple transitions of the form ⟨𝑛1, 𝑛2⟩, where
𝑛1 and 𝑛2 are respectively the source and target states of the transition. Symbol final?
is a Boolean: when final? = true, the source of the transition is graphically decorated
with a bullet (i.e., ∙); it indicates that the transition can be fired only if 𝑛1 is final. This
is useful only when 𝑛1 is not an elementary state (ie, it is a complex ASTD). SF ⊆ 𝑆 is
the set of shallow final states, while DF ⊆ 𝑆 denotes the set of deep final states, with
DF ∩ SF = ∅ and DF ⊆ 𝖽𝗈𝗆(𝜈�−{Elem}). A deep final state is final iff its sub-ASTD
is final; a shallow final is final, irrespective of the state of its sub-ASTD. 𝑛0 ∈ 𝑆 is the
name of the initial state. In this paper, for the sake of simplicity, we denote by 𝐴𝑡𝑟 the
sequential composition of the actions executed during a transition, that are, the actions
executed when exiting the source state, on the transition and when entering the target
state. The type of an Automaton state is ⟨aut◦, 𝑛, 𝐸, 𝑠⟩ where aut◦is a constructor of
the Automaton state. 𝑛 ∈ S denotes the name of the current state of the automaton. 𝐸
contains the values of the Automaton attributes. 𝑠 ∈ State is state of the sub-ASTD of
𝑛, when 𝑛 is a complex state; 𝑠 = Elem when 𝑛 is elementary.

Automaton F defines the attribute 𝑥𝐹 initialised by (𝑥𝐹 ∶= 0). The transition la-
belled with the event e2 permits to move from S2 to S3 . When it is triggered, the action
(𝑥𝐴 ∶= 𝑥𝐴 + 𝑥𝐵; 𝑥𝐹 ∶= 𝑥𝐹 + 1) is executed.

2. OVERVIEW OF THE ASTD NOTATION 5

To define the semantics of an Automaton 𝑎, the functions init and final are defined
as follows:

init(𝑎, 𝐺) =̂ (aut◦, 𝑎.𝑛0, 𝑎.𝐸𝑖𝑛𝑖𝑡([𝐺]), init(𝑎.𝜈(𝑛0), 𝐺 �− 𝑎.𝐸𝑖𝑛𝑖𝑡))
final(𝑎, (aut◦, 𝑛, 𝐸, 𝑠)) =̂ 𝑛 ∈ 𝑎.SF ∨ (𝑛 ∈ 𝑎.DF ∧ final(𝑎.𝜈(𝑛), 𝑠))

where 𝐺 and 𝐸𝑖𝑛𝑖𝑡 denote respectively the environment (i.e., current values of attributes
defined in the enclosing ASTDs of 𝑎) and the initial values of the attributes of 𝑎, which
may refer to variables declared in enclosing ASTDs, and thus they are replaced with
their current values defined in 𝐺 using the substitution operator ([]) (eg, (𝑥𝐹 ∶= 𝑥𝐴 +
1)([𝑥𝐴 ∶= 0])) ≡ 𝑥𝐹 ∶= 1). Note that the sub-ASTD of 𝑛0 is initialised by recursively
calling init on the ASTD of 𝑛0.

Inference rule aut1 defines the semantics of an automaton 𝑎 for a transition between
two states 𝑛1 and 𝑛2:

𝑎.𝛿((𝑛1, 𝑛2), 𝜎′, 𝑔, 𝐴𝑡𝑟, final?) Ψ Ω𝑙𝑜𝑐aut1

(aut◦, 𝑛1, 𝐸, 𝑠1)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (aut◦, 𝑛2, 𝐸′, init(𝑎.𝜈(𝑛2), 𝐸′))

The conclusion of this rule states that a transition on event 𝜎 can occur from 𝑛1 to 𝑛2 with
before and after automaton attributes values 𝐸,𝐸′. The sub-ASTD of 𝑛2, denoted by
𝑎.𝜈(𝑛2), is initialised. The premise provides that such a transition is possible if there is a
matching transition, which is represented by 𝛿((𝑛1, 𝑛2), 𝜎′, 𝑔, 𝐴𝑡𝑟, final?). 𝜎′ is the event
labelling the transition, and it may contain variables. The value of these variables is given
by the environment 𝐸𝑒, which contains the values of variables in ASTDs enclosing the
automaton (i.e., the super-ASTDs of 𝑎) and attributes of 𝑎, given in by 𝐸. This match
on the transition is provided by the premise Ψ defined as follows.

Ψ =̂
(

(final? ⇒ final(𝑎.𝜈(𝑛1), 𝑠)) ∧ 𝑔 ∧ 𝜎′ = 𝜎
)

([𝐸𝑔])

Ψ can be understood as follows. If the transition is final (i.e., final? = true), then the
current state 𝑠 must be final with respect to the ASTD of 𝑛1. The transition guard 𝑔
holds. The event received, noted 𝜎, must match the event pattern 𝜎′, which labels the
automaton transition, after applying the environment 𝐸𝑔 as a substitution. Environment
𝐸𝑔 , defined as 𝐸𝑒 �− 𝐸, denotes the list of variables of 𝑎 and its super-ASTDs. The
premise Ω𝑙𝑜𝑐 determines how the new values of the attributes in the environment are
computed when the transition occurs; its definition is omitted for the sake of concision.

Rule aut2 handles transitions occurring within a complex automaton state 𝑛.

𝑠
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.𝜈(𝑛) 𝑠′ Θ

aut2

(aut◦, 𝑛, 𝐸, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (aut◦, 𝑛, 𝐸′, 𝑠′)

The transition starts from a sub-state 𝑠 and moves to the sub-state 𝑠′ of the state 𝑛. Ac-
tions are executed bottom-up. 𝐸′′

𝑔 denotes the values computed by the ASTD of the state
𝑛. Premise Θ determines how 𝐸′′

𝑔 is computed, and it is reused in all subsequent rules
where a sub-ASTD transition is involved; it is omitted here for the sake of concision
and simplicity.

6 Q. Cartellier et al.

2.2 Kleene closure

This operator comes from regular expressions. It allows for iteration on an ASTD an
arbitrary number of times (including zero). When the sub-ASTD is in a final state, it
enables to start a new iteration. The Kleene closure ASTD has the following structure:

Kleene closure =̂ ⟨★, 𝑏⟩

where 𝑏 ∈ ASTD is the body of the closure. A Kleene closure is in a final state when it
has not started or when its sub-ASTD 𝑏 is in a final state. The type of a Kleene closure
state is ⟨★◦, 𝐸, 𝑠𝑡𝑎𝑟𝑡𝑒𝑑?, 𝑠⟩ where 𝑠 ∈ State, 𝑠𝑡𝑎𝑟𝑡𝑒𝑑? is a Boolean indicating whether
the first iteration has been started. It is essentially used to determine if the closure can
immediately exit (i.e., if it is in a final state) without any iteration. For a Kleene closure
ASTD 𝑎, the initial and final states are defined as follows.

init(𝑎, 𝐺) =̂ (★◦, 𝑎.𝐸𝑖𝑛𝑖𝑡([𝐺]), false, ⊥)
final(𝑎, (★◦, 𝐸, 𝑠𝑡𝑎𝑟𝑡𝑒𝑑?, 𝑠)) =̂ ¬𝑠𝑡𝑎𝑟𝑡𝑒𝑑? ∨ final(𝑎.𝑏, 𝑠)

where ⊥ denotes an undefined state. The semantics of a Kleene closure ASTD is defined
by two inference rules: ★1 allows for starting a new iteration (including the first one);
★2 allows for execution on the sub-ASTD.

final(𝑎, (★◦, 𝐸, 𝑠𝑡𝑎𝑟𝑡𝑒𝑑?, 𝑠)) init(𝑎.𝑏, 𝐸𝑒)
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.𝑏 𝑠′ Θ

★1

(★◦, 𝐸, 𝑠𝑡𝑎𝑟𝑡𝑒𝑑?, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (★◦, 𝐸′, true, 𝑠′)

𝑠
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.𝑏 𝑠′ Θ

★2

(★◦, 𝐸, true, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (★◦, 𝐸′, true, 𝑠′)

In Figure 1, C is a Kleene closure ASTD whose initial state is (★◦, ([𝑥𝐴 = 0, 𝑥𝐵 =
1, 𝑥𝐶 = 1]), false, ⊥); its sub-state is undefined (denoted by⊥). But when the first possible
event is received (i.e., e1), the sub-ASTD D is initialised (𝑥𝐷 ∶= 𝑥𝐶 +1), the transition
e1 is triggered from S0 and the action (𝑥𝐶 = 𝑥𝐶 + 𝑥𝐷; 𝑥𝐵 = 𝑥𝐵 + 𝑥𝐶 ; 𝑥𝐴 = 𝑥𝐴 + 1)
of the transition is executed. The current state is now S1 and the values of attributes are
([𝑥𝐴 = 1, 𝑥𝐵 = 4, 𝑥𝐶 = 3, 𝑥𝐷 = 2]). As S1 is a final state of D (i.e., the sub-ASTD of
C), D is final, and so is C , and a new iteration of D can be started again by receiving e1.
D is reinitialised to start a new iteration, so 𝑥𝐷 is reinitialised prior to this new transition,
but the values of 𝑥𝐴, 𝑥𝐵 , 𝑥𝐶 are unaffected by the initialisation of D .

2.3 Sequence

The Sequence ASTD allows for the sequential composition of two ASTDs. When the
first ASTD reaches a final state, it enables the execution of the second ASTD. In that
case, it is the reception of the next event that determines which ASTD is executed: if
both the first and the second can execute it, then a non-deterministic choice is made
between the two. When the second ASTD starts it execution, the first ASTD becomes

2. OVERVIEW OF THE ASTD NOTATION 7

disabled. The Sequence ASTD enables decomposing problems into a set of tasks that
have to be executed in sequence. The Sequence ASTD has the following structure:

Sequence =̂ ⟨−▸, fst, snd⟩
where fst and snd are ASTDs denoting respectively the first and second sub-ASTD of the
Sequence. A Sequence state is of type ⟨−▸◦, 𝐸, [fst ∣ snd], 𝑠⟩, where −▸◦ is a constructor
of the Sequence state, [fst ∣ snd] is a choice between two markers that respectively
indicate whether the Sequence is in the first sub-ASTD or the second sub-ASTD and
𝑠 ∈ State. Since 𝑠 does not indicate which ASTD is currently executed, the marker
[fst ∣ snd] is used for that purpose. Functions init and final of a sequence ASTD are
defined as follows.

init(𝑎, 𝐺) =̂ (−▸◦, 𝑎.𝐸𝑖𝑛𝑖𝑡([𝐺]), fst, init(𝑎.fst, 𝐺 �− 𝑎.𝐸𝑖𝑛𝑖𝑡))
final(𝑎, (−▸◦, 𝐸, fst, 𝑠)) =̂ final(𝑎.fst, 𝑠) ∧ final(𝑎.snd, init(𝑎.snd, 𝐸))

final(𝑎, (−▸◦, 𝐸, snd, 𝑠)) =̂ final(𝑎.snd, 𝑠)

The initial state of a Sequence is the initial state of its first sub-ASTD. A sequence state
is final when either (𝑖) it is executing its first sub-ASTD and this one is in a final state,
and the initial state of the second sub-ASTD is also a final state, or (𝑖𝑖) it is executing
the second sub-ASTD which is in a final state.

In Figure 1, the ASTD B is a Sequence ASTD that allows the sequential execution
of ASTDs C and E . B starts by executing C . As the initial state of E is not final, B is
final only when the final state of E is reached.

Three semantic rules are necessary to define the execution of the Sequence. Rule
−▸1 deals with transitions on the sub-ASTD fst only. Rule −▸2 deals with transitions
from fst to snd, when fst is in a final state. Rule −▸3 deals with transitions on the sub-
ASTD snd. Note that the arrow connecting ASTD C and E is not labeled with an event
pattern, because event patterns only occur on automaton transitions; when the execution
goes from C to E , it is an event of E that is executed, in this case an event of automaton
F .

𝑠
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.fst 𝑠′ Θ

−▸1

(−▸◦, 𝐸, fst, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (−▸◦, 𝐸′, fst, 𝑠′)

final(𝑎.fst, 𝑠) init(𝑎.snd, 𝐸𝑒)
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.snd 𝑠′ Θ−▸2

(−▸◦, 𝐸, fst, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (−▸◦, 𝐸′, snd, 𝑠′)

𝑠
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.snd 𝑠′ Θ−▸3

(−▸◦, 𝐸, snd, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎 (−▸◦, 𝐸′, snd, 𝑠′)

In Figure 1, in the sequence ASTD B , the ASTD E can be executed only when the
ASTD C reaches its final state, that is, it is not started at all or it is in the state S1 . The
first event executed in E is e2 because this is its only event that starts from its initial
state.

8 Q. Cartellier et al.

2.4 Guard
A Guard ASTD defines a conditional execution of its sub-ASTD using a predicate. To
be enabled, the first event executed must satisfy the Guard predicate. Once the guard
has been satisfied by the first event, the sub-ASTD of the guard executes the subsequent
events without further constraints from its enclosing guard ASTD. The guard predicate
can only refer to attributes declared in its enclosing ASTDs. The Guard ASTD has the
following structure:

Guard =̂ ⟨⇒, 𝑔, 𝑏⟩
where 𝑏 ∈ ASTD is the body of the guard. The type of a Guard state is ⟨⇒◦, 𝐸, 𝑠𝑡𝑎𝑟𝑡𝑒𝑑?, 𝑠⟩
where 𝑠𝑡𝑎𝑟𝑡𝑒𝑑? states whether the first transition has been done, 𝑠 ∈ State. The initial
and final states of a Guard ASTD 𝑎 are defined as follows.

init(𝑎, 𝐺) =̂ (⇒◦, 𝑎.𝐸𝑖𝑛𝑖𝑡([𝐺]), false, ⊥)
final(𝑎, (⇒◦, 𝐸𝑖𝑛𝑖𝑡, false, 𝑠)) =̂ final(𝑎, 𝑠)

final(𝑎, (⇒◦, 𝐸, true, 𝑠)) =̂ final(𝑎, 𝑠)

The semantic of the Guard ASTD is defined by two inference rules: ⇒1 deals with
the first transition and the satisfaction of the guard predicate; ⇒2 deals with subsequent
transitions.

𝑔([𝐸𝑒]) init(𝑎.𝑏, 𝐸𝑒)
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.𝑏 𝑠′ Θ

⇒1

(⇒◦, 𝐸𝑖𝑛𝑖𝑡, false, init(𝑎.𝑏, 𝐸𝑒))
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (⇒◦, 𝐸′, true, 𝑠′)

𝑠
𝜎,𝐸𝑔 ,𝐸′′

𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑎.𝑏 𝑠′ Θ

⇒2

(⇒◦, 𝐸, true, 𝑠)
𝜎,𝐸𝑒,𝐸′

𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (⇒◦, 𝐸′, true, 𝑠′)

Let us use the ASTD of Fig. 1 to explain when ASTDs are initialised in a sequence
ASTD. Suppose that the system is in the state S1 and that the event e2 is received. Since
S1 is a final state of D and C , the rule −▸2 allows for the execution of the transition e2
from the initial state of F . To trigger e2, the rule⇒2 requires that the guard (𝑥𝐵 > 𝑥𝐴+4)
of E must be satisfied with the current values of 𝑥𝐴 and 𝑥𝐵 . Finally, if the transition e2
had a guard, it should also be satisfied with the current values of its enclosing ASTDs
A, B , E and F . The variables in E and F are initialised only when the transition e2 is
evaluated. If the guards are satisfied, e2 is executed and the state moves to S3 ; if not, the
system stays in S1 , and then E and F will be initialised again when a new occurrence
of e2 is received. In other words, E and F are initialised for good only when the first
transition of F can be executed.

3 Proof obligations for invariant satisfaction

In this section, we describe a systematic approach for generating the proof obligations
that ensure the satisfaction of the invariants of an ASTD for its reachable states defined
by the transition system. Proof obligations are generated according to the structure of
the ASTD. Hereafter, we introduce the definitions of some concepts that we use in the
sequel of the paper.

3. PROOF OBLIGATIONS FOR INVARIANT SATISFACTION 9

3.1 Definitions

We introduce the following definitions that are used as hypotheses when proving an
invariant.

Definition 1. The full invariant of an ASTD 𝑎 is defined as follows:

Invfull(𝑎) =

⎧

⎪

⎨

⎪

⎩

𝑎.I if type(𝑎)=Elem
𝑎.I ∧

(
⋁

𝑠∈𝑎.𝑆 Invfull(𝑎.𝜈(𝑠))
)

if type(𝑎)=Automaton
𝑎.I ∧ (Invfull(fst) ∨ Invfull(snd)) if 𝑎 =̂ (−▸, fst, snd)
𝑎.I ∧ Invfull(𝑏) if 𝑎 ∈ {(★, 𝑏), (⇒, 𝑔, 𝑏)}

Invfull(𝑎) denotes the conjunction of 𝑎.I and the invariants of its sub-ASTDs. When 𝑎
contains several sub-ASTDs, we take the disjunction of their invariants, because the
sub-state of 𝑎 is in one of them.

Definition 2. The invariant of the final states of an ASTD 𝑎 is defined as follows:

Inv𝐹 (𝑎) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎.I if type(𝑎)=Elem

𝑎.I ∧
⎛

⎜

⎜

⎝

⋁

𝑛∈𝑎.SF Invfull(𝑎.𝜈(𝑛))
∨

⋁

𝑛∈𝑎.DF Inv𝐹 (𝑎.𝜈(𝑛))

⎞

⎟

⎟

⎠

if type(𝑎)=Automaton

𝑎.I ∧ Inv𝐹 (snd) if 𝑎 =̂ (−▸, fst, snd)
𝑎.I ∧ Inv𝐹 (𝑏) if 𝑎 =̂ (⇒, 𝑔, 𝑏)
𝑎.I if 𝑎 =̂ (★, 𝑏)

Inv𝐹 (𝑎) is the conjunction of 𝑎.I and the disjunction of the invariants of its final
states. A final state of an automaton can be deep or shallow. For a shallow final state 𝑛
of 𝑎, we take the full invariant of 𝑛, because according to the definition of final, 𝑛 is final
irrespective of its current sub-state, so its sub-state can be in any of its sub-ASTDs. For
a deep final state 𝑛, we know that it is final when its sub-ASTD is final, so we recursively
call Inv𝐹 on 𝑛 to get only the invariants of its final states. For a sequence, it suffices to
take into account Inv𝐹 (snd), because when a sequence is in its first ASTD, the initial
state of the second ASTD must also be final, and it becomes a special of the second
case. In addition, for a Kleene clsoure, the state is final while not started. Therefore, in
that particular case, Inv𝐹 (𝑎) = 𝑎.I.

3.2 Proof obligation generation

To ensure that an ASTD is correct, we have to establish that the invariant of each reach-
able state is fulfilled. To generate the PO related to the correctness of an ASTD, we
distinguish two cases:

– Initialisation: the state is determined by the init function at the initialisation of an
ASTD;

– Transition: the state is reached through a transition.

We define in the following sections two functions to generate proof obligations, one for
the initialisation, and another for the transitions. These functions recursively traverse an
ASTD to generate POs for all of its invariants declared in its sub-ASTDs.

10 Q. Cartellier et al.

3.3 Proof obligations for initialisations

Following the semantics of ASTDs, initialisations are done from the main ASTD down
to its sub-ASTDs. Therefore we introduce a recursive function 𝑃𝑂𝑖(𝑎, J,H, 𝐴𝑐𝑡) to gen-
erate proof obligations for initialisations where:

– 𝑎 stands for the ASTD whose POs for initialisation are generated.
– J stands for the conjunction of all the invariants of enclosing ASTDs of 𝑎; it provides

information on the values of the variables occurring in the initialisation expression
𝐴𝑐𝑡. It will be used as an hypothesis when proving an invariant of 𝑎 to provide
properties of variables which are not initialised by 𝐴𝑐𝑡.

– H contains the hypotheses obtained from enclosing ASTDs that are needed for
the initialisation of the subsequent steps of a sequential execution; it is used in the
Kleene closure and the sequence ASTDs, because the values of the enclosing vari-
ables are determined by the final states of the last executed ASTD.

– Act stands for all the actions that are executed before executing the initialisation of
ASTD 𝑎, through the init functions or the transitions that lead to a complex state of
an Automaton.

To generate the PO of the initialisation of the main (i.e., root) ASTD 𝑎 of a specification
and those of all its sub-ASTDs, the following call to 𝑃𝑂𝑖 is used: 𝑃𝑂𝑖(𝑎, true, true, skip).
Hereafter, we give the definition of 𝑃𝑂𝑖 according to each type of ASTD. We illustrate
them with the example of Fig. 1. We argue on the correction of these POs with respect
to the semantics of the ASTDs.

Kleene closure initialisation

Let 𝑎 be a Kleene closure ASTD on an ASTD 𝑏: 𝑎 =̂ (★, 𝑏). In that case, we have
to prove that 𝑎.J is verified and, for each iteration of the Kleene closure, the invariant of
the initial state of 𝑏 is verified too. This is expressed by the following proof obligation:

𝑃𝑂𝑖(𝑎, J,H,Act) =̂ {H ⇒ [Act; Init(𝑎)](𝑎.I)} ∪ (𝑖)
𝑃𝑂𝑖(𝑏, (J ∧ 𝑎.I),H, (Act; Init(𝑎))) ∪ (𝑖𝑖)
𝑃𝑂𝑖(𝑏, (J ∧ 𝑎.I), (J ∧ 𝑎.I ∧ Inv𝐹 (𝑏)), skip) (𝑖𝑖𝑖)

(i) PO (i) aims at verifying that 𝑎.I holds after executing the initialisation Init(𝑎) of 𝑎
following the initialisation actions Act executed in enclosing ASTDs. H provides
the properties of variables which are not affected by (Act; Init(𝑎)). Invariants of en-
closing ASTDs do not have to be proved again, because Init(𝑎) does not modify
variables of enclosing ASTDs.

(ii) PO (ii) is related to the first iteration of the ASTD 𝑏. 𝑎.I is added to the invariant
of enclosing ASTDs of 𝑏. Init(𝑎) is added to the sequence of actions that have been
executed.

(iii) PO (iii) corresponds to the second and next iterations of 𝑏. As the next iterations
will happen from the final state of 𝑏, the value of the variables of the enclosing
ASTDs, which are in the initialisation of 𝑏, are described by J ∧ 𝑎.I and the final
values of these variables at the end of 𝑏, given by Inv𝐹 (𝑏); thus, these two formulas

3. PROOF OBLIGATIONS FOR INVARIANT SATISFACTION 11

are conjoined and passed as the value of 𝐻 for proving the invariant of 𝑏. skip is
used as the set of previous actions executed (parameter 𝐴𝑐𝑡), because 𝐻 denotes
what is known about the values of the variables of the enclosing ASTDs.

To illustrate these definitions, consider the following call to compute the POs for the
initialisation of ASTD A of Fig. 1: 𝑃𝑂𝑖(A, true, true, skip). It generates the following
PO:

true ⇒ [Init(A)(A.I)

which is reduced to {(0 ≥ 0)} after applying the substitutions. In addition, it generates
the following two recursive calls:

1. 𝑃𝑂𝑖(B,A.I, true, Init(A))
2. 𝑃𝑂𝑖(B,A.I, (A.I ∧ Inv𝐹 (B)), skip);

where Inv𝐹 (B) = B.I ∧ E.I ∧ F.I ∧ S3.I, because B has only one final state, S3 .

Sequence initialisation

Let 𝑎 be a Sequence ASTD: 𝑎 =̂ (−▸, fst, snd). In that case, we have to prove that
the invariant of the initial states of fst and snd are fulfilled when these states are reached.
The generated POs are:

𝑃𝑂𝑖(𝑎, J,H,Act) =̂ {H ⇒ [Act; Init(𝑎)](𝑎.I)} ∪ (𝑖)
𝑃𝑂𝑖(fst, (J ∧ 𝑎.I),H, (Act; Init(𝑎))) ∪ (𝑖𝑖)
𝑃𝑂𝑖(snd, (J ∧ 𝑎.I), (J ∧ 𝑎.I ∧ Inv𝐹 (fst)), skip) (𝑖𝑖𝑖)

(i) This PO follows the same pattern as case (i) of a Kleene closure.
(ii) This PO is related to the initialisation of the ASTD fst which occurs at the start of

the sequence ASTD. It follows the same pattern as case (ii) of a Kleene closure.
(iii) This PO corresponds to the initialisation of the ASTD snd. According to the rule

−▸2 (see Section 2.3), the initialisation of snd can occur only when fst is in a final
state. Therefore, the PO is generated by taking (J∧𝑎.I∧ Inv𝐹 (fst)) as hypothesis and
skip as previous action since no additional action is executed when moving from the
ASTD fst into snd in a sequence ASTD.

To illustrate these definitions, consider the following call to compute the POs for the
initialisation of ASTD B of Fig. 1: 𝑃𝑂𝑖(B,A.I, true, Init(A)). By applying the defini-
tions, we obtain one generated PO and two recursive calls:

(i) 𝑡𝑟𝑢𝑒 ⇒ [Init(A); Init(B)] B.I): after substitution, we obtain the PO: {(0 + 1 > 0)}
(ii) 𝑃𝑂𝑖(C, (A.I ∧ B.I), true, (Init(A); Init(B)));

(iii) 𝑃𝑂𝑖(E, (A.I ∧ B.I), (A.I ∧ B.I ∧ C.I), skip): where C.I = Inv𝐹 (C) because C is a
Kleene closure.

12 Q. Cartellier et al.

Guard initialisation

Let 𝑎 =̂ (⇒, 𝑔, 𝑏) be a Guard ASTD on an ASTD 𝑏. The invariant of the initial state
of 𝑏 is verified by the following proof obligation:

𝑃𝑂𝑖(𝑎, J,H,Act) =̂ {H ⇒ [Act; Init(𝑎)](𝑎.I)} ∪ (𝑖)
𝑃𝑂𝑖(𝑏, (J ∧ 𝑎.I),H, (Act; Init(𝑎))) (𝑖𝑖)

(i) This PO follows the same pattern as in case (i) for a Kleene closure.
(ii) This PO is related to the initialisation of the sub-ASTD 𝑏. It follows the same pattern

as case (ii) of a Kleene closure and a sequence.

Note that the guard predicate 𝑔 is not used in the generated POs. According to the
guard semantics given by rules ⇒1 and ⇒2, the guard only applies to the first transition
of 𝑏. The initialisation of a guard ASTD is executed before 𝑔 is evaluated in the first
transition of the guard body. Therefore, no information can be obtained from 𝑔 in a
guard ASTD initialisation. To illustrate these definitions, consider the call (iii) from the
previous section:

𝑃𝑂𝑖(E, (A.I ∧ B.I), (A.I ∧ B.I ∧ C.I), skip)

It generates the following PO and one recursive call:

(i) (A.I ∧ B.I ∧ C.I) ⇒ [Init(E)] (E.I): After substitution, we obtain the PO:

(A.I ∧ B.I ∧ C.I) ⇒ (𝑥𝐴 ≥ 0 ∧ 𝑥𝐴 < 𝑥𝐵 ∧ 𝑥𝐴 ≤ 𝑥𝐴)

(ii) 𝑃𝑂𝑖(F, (A.I ∧ B.I ∧ E.I), (A.I ∧ B.I ∧ C.I), Init(E));

Automaton initialisation

Let 𝑎 be an automaton with 𝑎.𝑛0 as initial state. Automaton initialisation POs are
generated as follows:

𝑃𝑂𝑖(𝑎, J,H,Act) =̂ {H ⇒ [Act; Init(𝑎)](𝑎.I)} ∪ (𝑖)
𝑃𝑂𝑖(𝑎.𝜈(𝑛0), (J ∧ 𝑎.I),H, (Act; Init(𝑎))) (𝑖𝑖)

(i) This PO follows the same pattern as in case (i) for a Kleene closure.
(ii) This PO is related to the initialisation of the initial state of 𝑎. This initialisation

occurs at the start of the Automaton ASTD according to the syntax. It follows the
same pattern as case (ii) of a Kleene closure, sequence and guard.

The initial state 𝑎.𝑛0 could be an elementary state (i.e.type(𝑎.𝑛𝑜) = Elem). Therefore
we introduce a PO for a call on an elementary state 𝑛 as follows:

𝑃𝑂𝑖(𝑛, J,H,Act) = {H ⇒ [Act](𝑛.I)}

This PO follows the same pattern as the first generated PO for a complex ASTD,
except there is no additional action of initialisation. That is because an elementary state
does not initialise variables.

3. PROOF OBLIGATIONS FOR INVARIANT SATISFACTION 13

In Fig. 1, F is an Automaton with an elementary state as initial state. With the
call (ii) from the Guard initialisation:

𝑃𝑂𝑖(F, (A.I ∧ B.I ∧ E.I), (A.I ∧ B.I ∧ C.I), Init(E))

we obtain two generated POs:

(i) (A.I ∧ B.I ∧ C.I) ⇒ [Init(E); Init(𝐹)](F.I): After substitution, we obtain the PO:

(A.I ∧ B.I ∧ C.I) ⇒ (0 ≥ 0)

(ii) 𝑃𝑂𝑖(S2, (A.I ∧ B.I ∧ E.I ∧ F.I), (A.I ∧ B.I ∧ C.I), (Init(E); Init(F))): we apply the
definition of 𝑃𝑂𝑖 for an elementary state, generating the following formula:

{ (A.I ∧ B.I ∧ C.I) ⇒ [Init(E); Init(𝐹)](S2.I) }

After substitution, we obtain the PO:

{ (A.I ∧ B.I ∧ C.I) ⇒ (0 = 0 ∨ 𝑥𝐴 > 𝑥𝐴) }

3.4 Proof obligations for local transitions

When a transition 𝑡 is triggered, it makes the system move from a source state 𝑛1 to a
target state 𝑛2. So, we have to verify that the invariant of 𝑛2 and those of its enclosing
ASTDs are fulfilled. To this aim, we take as hypotheses the invariant of 𝑛1 and those
of its enclosing ASTDs. To get the set of POs associated with transitions, we introduce
the recursive function 𝑃𝑂𝑡𝑟(𝑎, J) where:

– 𝑎 stands for the ASTD whose POs for transitions are generated.
– J stands for all the invariants from the enclosing ASTD of 𝑎. Besides 𝑎.I, 𝑎 must

verify J.

The POs associated with the transitions of the main (ie, root) ASTD 𝑎 are generated by
calling 𝑃𝑂𝑡𝑟 as follows: 𝑃𝑂𝑡𝑟(𝑎, true). Hereafter, we give the definition of 𝑃𝑂𝑡𝑟 accord-
ing to each type of ASTD:

𝑃𝑂𝑡𝑟(𝑎, J) =

(i) If 𝑎 =̂ (−▸, fst, snd): 𝑃𝑂𝑡𝑟(fst, J ∧ 𝑎.I) ∪ 𝑃𝑂𝑡𝑟(snd, J ∧ 𝑎.I)
(ii) If 𝑎 ∈ {(★, 𝑏), (⇒, 𝑔, 𝑏)}: 𝑃𝑂𝑡𝑟(𝑏, J ∧ 𝑎.I)

(iii) If type(𝑎)=Automaton:
⋃

𝑠⋅ (𝑠 ∈ 𝑎.𝑆 ∧ 𝑎.𝜈(𝑠) ≠ Elem) ∣ (𝑃𝑂𝑡𝑟(𝑠, J ∧ 𝑎.I)) (iii-1)

∪
⋃

𝜏⋅ (𝜏 ∈ 𝑎.𝛿) ∣ (iii-2)
({J ∧ 𝑎.I ∧ H𝜏.final?(𝜏.𝜂.𝑛1) ∧ 𝜏.𝑔 ⇒ [𝜏.𝐴𝑡𝑟](J ∧ 𝑎.I)} ∪ (iii-2.1)
𝑃𝑂𝑖(𝜈(𝜏.𝜂.𝑛2), J ∧ 𝑎.I, J ∧ 𝑎.I ∧ H𝜏.final?(𝜏.𝜂.𝑛1) ∧ 𝜏.𝑔, 𝜏.𝐴𝑡𝑟)) (iii-2.2)

where: H𝑡𝑟𝑢𝑒 =̂ Inv𝐹 & Hfalse =̂ Invfull

14 Q. Cartellier et al.

(i), (ii) According to the ASTD syntax, transitions only occur in an Automaton. Thus, in
a Sequence, Kleene closure or Guard ASTD, recursive calls on 𝑃𝑂𝑡𝑟 are done on
sub-ASTDs.

(iii-1) In an Automaton, there are states and transitions. For each states, if the state is a
complex ASTD i.e., is not elementary, then a recursive call on 𝑃𝑂𝑡𝑟 must be done
on this sub-ASTD to check all Automaton ASTD.

(iii-2) For each transition 𝜏 in an Automaton ASTD, POs have to be generated to verify
that invariants of the target state are fulfilled after executing action 𝜏.𝐴𝑡𝑟.

(iii-2.1) This PO aims at verifying the preservation of invariants of enclosing ASTDs through
the action of the transition. All invariants from the source state are gathered as hy-
potheses, as well as the guard 𝜏.𝑔. A distinction is made on the final? property of the
transition using term H𝜏.final? because it determines if the previous state was final or
not. For a final transition, we use Inv𝐹 , providing more precise hypotheses for the
proof, otherwise we use Invfull.

(iii-2.2) This PO aims at verifying that the local invariant of the target state is fulfilled after
the execution of the transition. A recursive call to 𝑃𝑂𝑖 is done because the target
state could be a complex ASTD, so it is initialised with the transition as premises.

In Fig. 1, F is an Automaton ASTD. The call (obtained after going down the recur-
sion from A)

𝑃𝑂𝑡𝑟(F, (A.I ∧ B.I ∧ E.I))

We obtain four generated POs:

1. (A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒ [Act(e2)](A.I ∧ B.I ∧ E.I ∧ F.I):
After substitution, we obtain the PO:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒
(𝑥𝐴 + 𝑥𝐵 ≥ 0 ∧ 𝑥𝐵 > 0 ∧ (𝑥𝐸 ≥ 0 ∧ 𝑥𝐸 < 𝑥𝐵 ∧ 𝑥𝐸 ≤ 𝑥𝐴 + 𝑥𝐵) ∧ 𝑥𝐹 + 1 ≥ 0)

2. 𝑃𝑂𝑖(S3, (A.I ∧ B.I ∧ E.I ∧ F.I), (A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I),Acte2):
We apply the formula for an elementary state:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒ [Act(e2)](S3.I):
After substitution, we obtain the PO:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒ (𝑥𝐹 + 1 > 0 ∧ 𝑥𝐴 + 𝑥𝐵 > 𝑥𝐸)

3. (A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧ Guard(e3)) ⇒ [Act(e3)](A.I ∧ B.I ∧ E.I ∧ F.I):
After substitution, we obtain the PO:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧ Guard(e3))
⇒ (𝑥𝐴 − 𝑥𝐸 ≥ 0 ∧ 𝑥𝐵 > 0 ∧ (𝑥𝐸 < 𝑥𝐵 ∧ 𝑥𝐸 ≥ 0 ∧ 𝑥𝐸 ≤ 𝑥𝐴 − 𝑥𝐸) ∧ 𝑥𝐹 ≥ 0)

4. 𝑃𝑂𝑖(S2, (A.I ∧ B.I ∧ E.I ∧ F.I), (A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧ Guard(e3)),Acte3):
We apply the formula for an elementary state:
{(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧ Guard(e3)) ⇒ [Act(e3)](S2.I)}:
After substitution, we obtain the PO:
{(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧ Guard(e3)) ⇒ (𝑥𝐹 = 0 ∨ 𝑥𝐴 − 𝑥𝐸 > 𝑥𝐸)}

3.5 Proving proof obligations and strengthening invariants

In this section, we describe how to verify the generated proof obligations using RODIN
and how to reinforce invariants using ProB when POs are unprovable. Using RODIN,

3. PROOF OBLIGATIONS FOR INVARIANT SATISFACTION 15

proof obligations are represented as theorems of an EVENT-B contexts. Since variables
of an ASTD are typed in their declaration (i.e., 𝑥 ∶ 𝑇), we add this type in the invariant
of the ASTD using 𝑥 ∈ 𝑇 ∧ 𝑎.I. Free variables are universally quantified in each PO
when defining them as theorems.

The PO generated for the initialisation of the ASTD E is the following:

(𝐴.I ∧ 𝐵.I ∧ 𝐶 .I) ⇒ [Init(𝐸)](𝐸.I)

Adding types of variables, replacing invariants names by their definitions and adding
quantifiers on free variables, we obtain the following formula which is added as a theo-
rem in a RODIN context:

∀𝑥𝐴 ⋅ ∀𝑥𝐵 ⋅ ∀𝑥𝐶 ⋅ (((𝑥𝐴 ∈ ℤ ∧ 𝑥𝐴 ≥ 0) ∧ (𝑥𝐵 ∈ ℤ ∧ 𝑥𝐵 > 0) ∧
(𝑥𝐵 > 𝑥𝐴 ∧ 𝑥𝐶 ∈ ℤ))
⇒
(𝑥𝐴 ∈ ℤ ∧ 𝑥𝐴 ≥ 0 ∧ 𝑥𝐴 < 𝑥𝐵 ∧ 𝑥𝐴 ≤ 𝑥𝐴)))

This theorem is trivial to prove, since the goal consists of trivial properties or formulas
available in the hypotheses.

The following PO, related to the initialisation of the ASTD D after more than one
iteration of the closure ASTD C , is less trivial and requires some deduction rules which
are automatically applied by the Rodin provers.

∀𝑥𝐴 ⋅ ∀𝑥𝐵 ⋅ ∀𝑥𝐶 ⋅ ∀𝑥𝐷 ⋅ (((𝑥𝐴 ∈ ℤ ∧ 𝑥𝐴 ≥ 0) ∧ (𝑥𝐵 ∈ ℤ ∧ 𝑥𝐵 > 0) ∧
(𝑥𝐶 ∈ ℤ ∧ 𝑥𝐵 > 𝑥𝐴) ∧
(𝑥𝐷 ∈ ℤ ∧ 𝑥𝐷 > 0) ∧ (𝑥𝐶 ≥ 𝑥𝐷 ∧ 𝑥𝐴 > 0))
⇒
(𝑥𝐶 + 1 ∈ ℤ ∧ 𝑥𝐶 + 1 > 0))

As hypotheses, we have 𝑥𝐶 ∈ ℤ and 𝑥𝐶 ≥ 𝑥𝐷 ∧ 𝑥𝐷 > 0 so the goal (𝑥𝐶 + 1 ∈
ℤ ∧ 𝑥𝐶 + 1 > 0) is proven.

When a theorem is added to the context, RODIN will automatically try to prove it. If
it fails, the user has to prove it using the interactive provers. When we fail to discharge a
proof obligation, we use the model checker PROB [8] to find a possible counter-example
for it. The counter-example gives the values of the different variables that violate one or
several invariants. To fix this counter-example, two cases are distinguished:

1. The counter-example denotes a reachable state: it means that the invariant of a state
is false and it should be corrected.

2. The counter-example is not a reachable state: in that case, the invariant that is vio-
lated is of the form P1 ⇒ P2. This means that P1 is too weak; that is, P1 denotes
an unreachable state. To fix that, we have to strengthen some state invariants to rule
out this counter-example.

In Fig.1, the generated PO for the transition e3 is not provable. The counter-example
found by PROB asserts that at the state S3 , the values of the variables are as follows:
𝑥𝐴 = 2; 𝑥𝐵 = 2; 𝑥𝐸 = 1; 𝑥𝐹 = 1. Then, during the transition, the substitution 𝑥𝐴 ∶=
𝑥𝐴−𝑥𝐸 is done, setting 𝑥𝐴 to 1, and thus, S2.I ≡ (𝑥𝐹 = 0∨𝑥𝐴 > 𝑥𝐸) is not satisfied. In

16 Q. Cartellier et al.

fact, the state S3 is not reachable for 𝑥𝐴 ≤ 2𝑥𝐸 . That is because S2 ≡ 𝑥𝐴 ≥ 𝑥𝐸 ∧ 𝑥𝐵 >
𝑥𝐸 and the transition e2 does the substitution 𝑥𝐴 ∶= 𝑥𝐴 + 𝑥𝐵 which leads to 𝑥𝐴 > 2𝑥𝐸
in state S3 . Thus, we derive a new invariant for S3 that rules out the counter-example:

𝑥𝐹 > 0 ∧ 𝑥𝐴 > 2𝑥𝐸

It must be kept in mind that modifying an invariant modifies the generated proof obliga-
tions. The Rodin archive of the running example can be found in [3]. Proof obligations
for the final version (corrected with the above new invariant) are automatically proved
by Rodin.

4 Conclusion

In this paper, we have presented a systematic formal approach to verify the satisfaction
of local invariants of ASTDs diagrams. Roughly speaking, an ASTDs is a set of hier-
archical states (simple or complex) related by process algebra operators and transitions.
Local invariants can be associated to these states. We generate proof obligations to en-
sure that each reachable state satisfies its invariant. To this aim, our approach consists in
recursively traversing the hierarchical states and analysing state initialization and transi-
tion actions to generate appropriate proof obligations. The generated proof obligations
are defined as theorems in Event-B contexts and are discharged using the Rodin plat-
form, and debugged using PROB by using it as a model checker of first-order formulas.
To show the feasibility of our approach, we have applied it on several examples which
are available in [3].

We are currently working on the implementation of a tool that automatically gen-
erates the proof obligations from the ASTD specification. We are also working on the
proof obligations of the remaining ASTD operators (flow, choice, synchronization and
their quantified versions). Shared variables within synchronized ASTDs represent a
challenge for defining proof obligations, because potential interferences between dif-
ferent ASTDs must be taken into account. Future work also includes considering the
timed extension of ASTDs as defined on basic ASTD operators in [2]. Finally, it would
be important to formally prove the correctness of our proof obligations. We intend to
use the approach proposed in [15], where the theory plugin of RODIN is used to build a
meta-model of a specification language (EVENT-B). We could follow a similar approach
and define the semantics of ASTDs in a RODIN Theory, and then show that our proof
obligations are sufficient to show that the invariants are preserved over the traces of an
ASTD. This is a quite challenging task, since the semantics of ASTDs is more complex
than the one illustrated in [15].

References

1. de Azevedo Oliveira, D., Frappier, M.: Modelling an automotive software system
with TASTD. In: Glässer, U., Creissac Campos, J., Méry, D., Palanque, P. (eds.) Rigorous
State-Based Methods (ABZ2023). LNCS, vol. 14010, pp. 124–141. Springer (2023)

4. CONCLUSION 17

2. de Azevedo Oliveira, D., Frappier, M.: TASTD: A real-time extension for ASTD. In: Glässer,
U., Campos, J.C., Méry, D., Palanque, P.A. (eds.) Rigorous State-Based Methods (ABZ2023).
LNCS, vol. 14010, pp. 142–159. Springer (2023)

3. Cartellier, Q.: https://gitlab.com/QCartellier/icfem2023-poastd/-/tree/
main/ (2023)

4. El Jabri, C., Frappier, M., Ecarot, T., Tardif, P.M.: Development of monitoring systems
for anomaly detection using ASTD specifications. In: Aït-Ameur, Y., Crăciun, F. (eds.) TASE.
LNCS, vol. 13299, pp. 274–289. Springer (2022)

5. Fayolle, T.: Combinaison de méthodes formelles pour la spécification de systèmes industriels.
Theses, Université Paris-Est ; Université de Sherbrooke (Québec, Canada) (Jun 2017)

6. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending Statecharts with
process algebra operators. ISSE 4(3), 285–292 (2008)

7. Khan, A.H., Rauf, I., Porres, I.: Consistency of UML class and Statechart diagrams with state
invariants. In: MODELSWARD. pp. 14–24. SciTePress (2013)

8. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B Method. JSTTT 10(2),
185–203 (2008)

9. Mammar, A., Frappier, M.: Modeling of a speed control system using Event-B. In: Raschke,
A., Méry, D., Houdek, F. (eds.) Rigorous State-Based Methods. LNCS, vol. 12071, pp. 367–
381. Springer (2020)

10. Mammar, A., Frappier, M., Laleau, R.: An Event-B model of an automotive adaptive exterior
light system. In: Raschke, A., Méry, D., Houdek, F. (eds.) Rigorous State-Based Methods.
LNCS, vol. 12071, pp. 351–366. Springer (2020)

11. Milhau, J., Frappier, M., Gervais, F., Laleau, R.: Systematic translation rules from ASTD to
Event-B. In: Méry, D., Merz, S. (eds.) IFM. LNCS, vol. 6396, pp. 245–259. Springer (2010)

12. Nganyewou Tidjon, L., Frappier, M., Leuschel, M., Mammar, A.: Extended algebraic state-
transition diagrams. In: 2018 23rd International Conference on Engineering of Complex
Computer Systems (ICECCS). pp. 146–155. IEEE Computer Society (2018)

13. Porres, I., Rauf, I.: Generating class contracts from UML protocol statemachines. In: Pro-
ceedings of the 6th International Workshop on Model-Driven Engineering, Verification and
Validation. MoDeVVa ’09, ACM, New York, USA (2009)

14. Porres, I., Rauf, I.: From nondeterministic uml protocol statemachines to class contracts. In:
2010 Third International Conference on Software Testing, Verification and Validation. pp.
107–116 (2010)

15. Riviere, P., Singh, N.K., Ameur, Y.A., Dupont, G.: Formalising liveness properties in event-
b with the reflexive EB4EB framework. In: Rozier, K.Y., Chaudhuri, S. (eds.) NASA
Formal Methods - 15th International Symposium, NFM 2023, Houston, TX, USA, May
16-18, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13903, pp. 312–
331. Springer (2023). https://doi.org/10.1007/978-3-031-33170-1_19, https:
//doi.org/10.1007/978-3-031-33170-1_19

16. Said, M.Y., Butler, M.J., Snook, C.F.: A method of refinement in UML-B. Softw. Syst. Model.
14(4), 1557–1580 (2015)

17. Sekerinski, E.: Verifying Statecharts with state invariants. In: 13th Int. Conf. on Engineering
of Complex Computer Systems (ICECCS). pp. 7–14. IEEE Computer Society (2008)

18. Tidjon, L.N., Frappier, M., Mammar, A.: Intrusion detection using ASTDs. In: Barolli, L.,
Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA. Advances in Intelligent
Systems and Computing, vol. 1151, pp. 1397–1411. Springer (2020)

https://gitlab.com/QCartellier/icfem2023-poastd/-/tree/main/
https://gitlab.com/QCartellier/icfem2023-poastd/-/tree/main/
https://doi.org/10.1007/978-3-031-33170-1_19
https://doi.org/10.1007/978-3-031-33170-1_19
https://doi.org/10.1007/978-3-031-33170-1_19
https://doi.org/10.1007/978-3-031-33170-1_19

	Proving Local Invariants in ASTDs

