
SGAC: A Patient-Centered Access Control Method
Nghi Huynh∗†, Marc Frappier†, Herman Pooda†, Amel Mammar‡ and Régine Laleau∗

†Université de Sherbrooke, Québec, Canada
∗Université Paris-Est Créteil Val de Marne, France
‡Institut Mines-Télécom/Télécom SudParis, France

Abstract—This paper presents SGAC(Solution de
Gestion Automatisée du Consentement, automatised
consent management solution), a new healthcare access
control model and its support tool, that manages pa-
tient wishes regarding access to their electronic health
record (EHR). The development of this model has been
achieved in the scope of a project with the Sherbrooke
University Hospital, and thus has been adapted to take
into account laws and regulations applicable in Québec
and Canada, as they set bounds to patient wishes:
under strictly defined contexts, patient consent can be
overridden to protect his/her life. Moreover, since pa-
tient wishes and laws can be in conflict, SGAC provides
a mechanism to address this problem. Besides, laws do
not cover all cases where consent should be overridden
to ensure patient safety. To this end, we define a formal
model of SGAC which allows for property verification,
making it possible to detect these cases. A performance
comparison with XACML (WSO2/Balana) is presented
and demonstrates the superior performances of SGAC.

Index Terms—healthcare, access control method,
consent management, formal model, verification.

I. Introduction

Before being electronic, patient data were stored
physically in each health centre. In Québec, access to
health records is managed by specially trained staff, the
archivists, who are responsible for applying the laws and
regulations to access request. Laws set a frame within
which patients can manage access to their health record,
as long as they are not endangering themselves. Access
control in healthcare knows two major contentious con-
cerns: patient data confidentiality and patient safety. The
former is about non-disclosure of data their owner would
judge confidential; the latter is about the rules not being
too restrictive and a burden for the health worker when
requesting all necessary data to provide suitable care to
the patient. Having patients specifying access rules to
their records (thus expressing their consent) is a way to
address the first concern. To address the second concern,
laws and regulations set a frame that allows accesses
to patient data without consent under strictly defined
contexts. The problems this approach rises are multiple:
laws generally set frame only for exceptional cases and not
for everyday care, thus it does not always allow to override
patient consent in order to give him/her suitable care,
for instance when the patient is hiding important data

like medicinal allergies. Furthermore, conflicts may arise
between hospital rules, which define health workers regular
access, patient rules, and break-the-glass rules which must
provide full access to the physicians in strictly defined
contexts.
In this paper, we present an access control method

named SGAC (Solution de gestion automatisée du con-
sentement)/(Automated consent management solution),
which offers a resolution mechanism to the different con-
flicts that may occur between rules from different sources.
This method allows formal verification in order to detect
cases where suitable care cannot be given.
The rest of this paper is structured as follows. Section II

provides requirements for access control and consent
management used at the Sherbrooke University Hospital
(CHUS) and scenarios illustrating expected behaviours.
Section III introduces SGAC. We illustrate how SGAC
behaves in Section IV. Section V provides a complete
formal model of SGAC. Section VI compares our findings
with similar work on access control in healthcare. A perfor-
mance comparison with XACML [1] is given in section VII.
We conclude this paper with an appraisal of our work in
Section VIII.

II. Access Control Requirements at CHUS

Our access control model has been designed to meet the
requirements of CHUS within the context of applicable
laws on privacy protection in Québec and Canada. We
believe these requirements are sufficiently general to be
applicable in other countries as well.
Req. 1: The patient’s consent must be obtained in order

to provide access to his/her electronic health
record (EHR).

Req. 2: A patient can grant or deny access to any of
his/her EHR to any person of the hospital staff.

Req. 3: As required by the laws of Québec, when the
patient’s life is in danger, the medical staff must
have access to his/her EHR, without regards to
his/her consent. Other conditions, like a court
order, can also override the patient’s rules.

Req. 4: Rules can be specified for a single person or
a group of persons. Persons can be grouped
according to any criteria, like functional role,
work group, departments, care unit, etc.

Req. 5: Rules can be specified for a single record or
a group of records. Records can be grouped
according to the taxonomy commonly used for
EHR.

Req. 6: When several rules are applicable for a user
request, they must be ordered according to the
following priority to determine which rule pre-
vails: the rules prescribed by laws override the
patient’s rules; the rules of the patient override
the rules of the hospital.

Req. 7: For two rules at the same level of priority, a
rule which targets a group of person G1 has
precedence over a rule targeting a less specific
group of persons G2, (ie, when G1 ⊂ G2).

Req. 8: For two rules at the same level of priority,
when neither of the two groups of persons
is more specific than the other (i.e., when
¬(G1 ⊂ G2 ∨ G2 ⊂ G1)), a prohibition rule
overrides a permission rule.

Req. 9: Each rule has a condition that determines its
applicability. This condition can refer to any
attribute that can be computed using the con-
text of the clinical system (e.g., the state of
the patient, the presence of the patient in the
hospital, etc).

Req. 10: The access control system shall be able to handle
a very large volume of data, hundreds of thou-
sands of patients and rules.

To illustrate some of these requirements, we provide the
following scenarios. In these scenarios, Anna and Sam are
patients, Alice is a nurse and Bob is a doctor. For each
scenario, we refer to the requirements that it illustrates.

Scenario 1 - Group prohibition

Anna wants to deny access to her psychiatric records to
the entire hospital staff.
Requirements: Req. 2, Req. 4 and Req. 5.

Scenario 2 - Record taxonomy

Sam has two laboratory results, lab1 and lab2. He au-
thorises hospital staff to access all his laboratory results.
Later, Sam receives a third laboratory result, lab3.
Expected behaviour : all requests from hospital staff to ac-
cess Sam’s laboratory results, including lab3 should be
permitted.
Requirements: Req. 5.

Scenario 3 - Priority

Sam wishes to grant all hospital staff access to his blood
tests, DNA tests and psychiatric records. However, there
is a law that restricts access to psychiatric records to
psychiatrists only.
Expected behaviour : all requests from hospital staff, other

than psychiatrists, to access Sam’s psychiatric records are
denied; all requests of hospital staff to access Sam’s blood
and DNA record are permitted.
Requirements: Req. 6.

Scenario 4 - Specificity

Anna wants to deny Alice access to her laboratory results.
Anna also has a rule granting nurses access to her labora-
tory results.
Expected behaviour : all requests from nurses, except Alice,
to access Anna’s laboratory results are permitted; Alice
can’t access Anna’s laboratory results.
Requirements: Req. 7.

Scenario 5 - User group specificity

Anna specifies two rules: the first rule denies emergency
staff access to her EHR; the second rule grants general
practitioners access to her EHR. Bob, working in both
department, requests access to Anna’s EHR.
Expected behaviour : Bob’s request should be denied, since
the group of general practitioners is not more specific than
the group of emergency staff, and vice-versa.
Requirements: Req. 8.

Scenario 6 - Condition

Sam wants to specify rules that are valid in certain con-
texts: he want to restrict access to his EHR when he is
hospitalised; when he is not hospitalised, Sam wants to
deny access to his EHR to all hospital staff.
Requirements: Req. 9.

III. SGAC Data Structures, Rules and Requests
This section presents our model SGAC and the different

data structures needed to specify rules and requests. Con-
flict resolution is then illustrated by different examples.
Notations are first introduced.

A. Notation
For the rest of the paper, we introduce the following

notations drawn, in most cases, from the B notation [2].
1) Set Theory: Let A, B, C be sets.
• For a n-tuple a = (a1, . . . , an) we denote by a.ak the
component of a named ak.

• P(A) = {X | X ⊆ A}, called the power set of A, is
the set of all subsets of A.

• A × B = {x 7→ y | x ∈ A ∧ y ∈ B} is the Cartesian
product; it is a set of ordered pairs x 7→ y.

• A relation R from A to B is a subset of A×B.
• id(A) = {x 7→ x | x ∈ A} denotes the identity relation
on A, i.e. the relation that associates each element of
A to itself.

• A ↔ B = P(A × B) denotes the set of relations
between A and B.

• dom(R) = {x ∈ A|∃y ∈ B • x 7→ y ∈ R} denotes the
domain of R.

• R[C] = {y | y ∈ B ∧ ∃x ∈ C • x 7→ y ∈ R)} denotes
the image set of C by relation R ∈ A↔ B.

• A 7→ B denotes the set of (partial) functions from A
to B. A partial function f from A to B is a relation
such that |f [{x}]| ≤ 1 for x ∈ A.

• A → B denotes the set of total functions from A to
B. A total function f is a partial function such that
dom(f) = A.

• R1o
9R2 = {x 7→ z | ∃y ∈ B•x 7→ y ∈ R1 ∧ y 7→ z ∈ R2}

is the relational compositon of R1 ∈ A ↔ B and
R2 ∈ B ↔ C.

• Let R ∈ A ↔ A. Rn denotes the composition of R
with itself n times (n ≥ 0), with Rn+1 = R o

9 Rn and
R0 = id(A).

• R+ =
⋃

n≥1
Rn denotes the transitive closure of R, i.e.,

the smallest transitive relation which contains R.
• Let R ∈ A ↔ A. R∗ = R+ ∪ id(A) denotes the
transitive and reflexive closure of R, i.e., the smallest
transitive and reflexive relation which contains R.

2) Graph: A directed graph is an ordered pair
G = (V, E) where V is the set of vertices V and E
is the set of edges, such that E ∈ V ↔ V . G is said
acyclic iff G.E+ ∩ id(G.V) = ∅. In an edge x 7→ y, y
is called a successor of x and x a predecessor of y. In
an edge x 7→ y of G.E+, i.e., the transitive closure of
G.E, x is an ancestor of y and y is a descendant of x.
A vertex without any successor is called a sink and sinks
reachable from a vertex v in a graph G are denoted by
sink(G, v) = G.E∗[{v}] − dom(G.E). All the sinks of a
graph G are denoted by sink(G) = G.V − dom(G.E).

B. Using graphs
In SGAC, two directed acyclic graphs are needed in

order to specify rules and requests:
• the subject graph represents the hierarchy which mir-
rors the functional organisation chart or any grouping
of users relevant for access control;

• the resource type graph represents the taxonomy of
EHR and their organisation in the healthcare facili-
ties.

Fig. 1 illustrates a subject graph. The graph includes
people and subjects as vertices. A subject represents a
person or a set of people. The hierarchy works as follows:
a rule on subject s is inherited by all the successors of s
in G.E+. For instance in Fig. 1, if a permission is given to
the General Practice department then this permission is
inherited by GP Physicist and GP Nurse, Bob and Alice.
Fig. 2a illustrates the resource type graph. We distin-

guish between resources types and documents. Medical
records are structured into a taxonomy which is rep-
resented by a graph of resource types. A document is
an actual medical record of a patient. Documents are
instances of sinks of the resource type graph. A document

Fig. 1: Subject graph example

has attributes which can be given as parameters to non-
sink vertices. For instance, a certain AIDS screening test
can have many attributes such has: the patient it is related
to, the visit when it was ordered, the ID of the screening
test etc... There is a functional dependency between the
document type identifier and the other attributes, making
the key document identifier sufficient to retrieve a docu-
ment, and all its attributes.
The resource type graph sinks are document type, and

the non-sink vertices represents aggregations of these
document types. For instance, the vertex patient represents
all the data types of all patients and can be instantiated
with a parameter to target the data of a particular patient.
Fig. 2b illustrates the resource type graph being instan-

tiated for the document Blood 123 of the patient Simon
during his visit no. 2.
These two graphs define the basis on which rules and

requests are built.

C. Rule and request specification

A rule allows to specify a control over the access to a
resource. It is defined by:
• a subject: a person or a group of people to control;
• a resource: the data to be protected;
• an action: the operation the subject wants to do on
the resource;

• a priority: a number which defines the priority of the
rule;

• a modality: an authorisation or a prohibition which
defines the effect of the rule;

• a condition: a formula which determines the applica-
bility of the rule. It can be evaluated at run time by
functions checking for instance information stored in

(a) Resource type graph (b) Instantiated resource type graph

Fig. 2: Resource graph example

a database. For the rest of the paper, we describe rule
conditions in natural language.

A request is the demand the subject issues in order to
execute an action on a resource. It has then the following
attributes:
• a subject: the request initiator;
• a document: a document the request initiator wants
access to;

• an action: the operation the subject wants to do on
the document.

D. Conflict resolution
When more than one rule apply to a request, and if

they have different modalities, a situation, typically called
a conflict in the literature, arises. To decide whether access
is granted or denied, we define an ordering (a precedence)
on rules. The rule with the “highest” precedence deter-
mines the access decision. Let r1, r2 be two applicable rules
for a request.
1) If r1 has a smaller priority than r2, we say that r1 has

precedence over r2.
2) If r1 and r2 have the same priority, and if the subject

of r1 is more specific than the subject of r2 (i.e., the
subject of r1 is a descendant of the subject of r2 in
the subject graph), then r1 has precedence over r2.

3) If r1 and r2 have the same priority, and neither of
their subjects is more specific than the other, then
prohibitions have precedence over permissions.

This ordering is not total. There may be two rules r1, r2
such that neither of them precedes the other. However,
in such a case, r1 and r2 have the same modality, thus
there is no conflict and the decision is the modality
of these elements with highest precedence. The formal
definition of this ordering in Section V shall clarify the
third clause in some subtle cases, to avoid any ambiguity
in its interpretation.

This conflict resolution method is absolutely au-
tonomous and does not require the intervention of an
external actor. Section IV illustrates the conflict resolution
technique with three examples.

IV. Examples
This section illustrates the behaviour of SGAC with

three examples. For the sake of simplicity, we illustrate
read requests. The same approach applies for any other
action.

A. Example 1: basics
Let’s model scenario 1. The resource type graph must

be instantiated with the parameters defining Anna’s data.
Modelling Anna’s rule consists in prohibiting access to
the documents descending from the vertex Psychiatry in
the resource graph. The vertex Patient gets the unique
identifier of the patient Anna. The vertex CHUS in the
subject graph (Fig. 1) represents all the personnel from
the hospital. By convention, patient rules are of priority

Rule Resource Subject Pri. Mod. Cond.
r1 Psychiatry (patient =

Anna)
CHUS 2 − TRUE

TABLE I: Scenario 1 rule (for the action read)

2. When no condition is specified, the rule condition is set
to TRUE . A prohibition is represented by symbol “−”,
whereas a permission is represented by symbol “+”. The
rule is presented in Table I.

If Bob requests an access to Anna’s psychiatric report
no.20, then SGAC will first determine the applicable rules.
Rule r1 is applicable because: r1.subject is an ancestor
of the request subject, r1.resource is an ancestor of the
requested resource, the action matches, the condition is
verified, and the parameter fits. If this is the only rule
applicable, then the system returns prohibition. We only
described the rule issued by Anna’s consent for the sake
of simplicity in this example. In the case where no rules
from laws and regulations are applicable, if Anna’s rule is
among the other rules applicable to a request, then this
request is denied.

B. Example 2: let’s get started
In this example, the rule base is as follow:
• the laws and regulations allow emergency physicians
to access (read and write) the data of any patient who
is in a life-threatening situation;

• the hospital allows general physicians to read and
write data for any patient under their care;

• the hospital allows nurses to read vitals of a patient
at any time.

Rule Resource Subject Pri. Mod. Cond.
r1 Patient Emergency 1 + patient life is threat-

ened
r2 Patient GP Physi-

cian
3 + the subject is the at-

tending physician
r3 Vitals Nurses 3 + TRUE

TABLE II: Example 2 rules (for the action read)

This can be represented by the rule base presented in
Table II. By convention for these examples, the priority of
a rule is determined by the entity issuing the rule: if the
rule is from a healthcare facility, then it is set to 3, if it
is from the patient, then priority is set to 2, and if the
rule is from laws and regulations, priority is set to 1. The
lower the value a rule priority has, the higher precedence
the rule gets. This reflects the wanted behaviour: laws and
regulation have precedence over patient rules, which have
precedence over healthcare facility rules.

Rule r1 translates the fact that any physician in the
Emergency department can access a record if its owner’s
life is threatened: an authorisation given to the vertex
Emergency to read all documents from Patient, under the
specified condition. The priority is set to 1 since the rule
stems from the laws and regulations.

The rule r2 translates the fact that a physician is allowed
to read the data of the patients under his/her care, i.e. the

physician has to be the patient’s attending physician: an
authorisation given to the vertex GP Physician to read
all documents from Patient, under the condition that the
physician is the attending physician of the patient. The
priority of this rule is set to 3 since the rule stems from
the hospital.
Finally, the rule r3 translates the fact that a nurse is

allowed to read the vitals of any patient, at any time.
Since, the nurse can access the Vitals of any Patient in any
condition, the condition of r3 is set to TRUE . The priority
is also set to 3 since the rule stems from the hospital too.
In order to have a better understanding of the rules, the

subject graph, the resource type graph and the rules are
presented in the same picture in Fig. 3.
Now let’s say that patient Anna is treated for some light

mental disorder by Charles, a psychiatrist. Since Charles
is Anna’s attending physician, he can access her records
while others can’t except Alice who can read Anna’s vitals.
The access rights are summed up in Table III.

Staff Pulse Blood
Pressure

Report Blood Urine

Alice
√ √

× × ×
Bob × × × × ×
Charles

√ √ √ √ √

David × × × × ×

TABLE III: Example 2: Access of the CHUS personnel to
Anna’s Record, wrt Fig. 3

Then comes Sam, badly hurt, unconscious in the
Emergency department. Since, Bob and David are work-
ing in the Emergency department and that Sam’s life is
threatened, both have access to his records. Alice still can
read Sam’s vitals while Charles does not have any access
to Sam’s data. The resulting accesses are presented in
Table IV.
Staff Pulse Blood

Pressure
Report Blood Urine

Alice
√ √

× × ×
Bob

√ √ √ √ √

Charles × × × × ×
David

√ √ √ √ √

TABLE IV: Example 2: Access of the CHUS personnel to
Sam’s Record, wrt Fig. 3

Finally, in the case of a patient who has no attending
physician, and whose life is not threatened, the only person
who can access this patient’s records is Alice, who is
allowed to read the vitals.

C. Example 3: adding consent
In this example, we take the same initial rule base

(Table II), and we add some consent rules. Let’s say Anna
personally knows Bob and does not want him to access
her records (rule r4). This rule targets directly Bob and
Anna’s data, and is applicable at any time. Since r4 is
directly issued by a patient, its priority is set to 2. At this

Fig. 3: Example 2 graphs with rules

Staff Pulse Blood
Pressure

Report Blood Urine

Alice
√ √

× × ×
Bob × × × × ×
Charles × × × × ×
David

√ √
× × ×

TABLE V: Example 3: Access of the CHUS personnel to
Anna’s Record

point, even if Anna is under Bob’s care, Bob won’t have
access to Anna’s records because of r4, unless there is an
emergency context where Anna’s life is threatened. In that
case, r1 would allow him to access the data.

Then, Anna is hospitalised and gets on with the staff
of the Emergency department. When she has to undergo
rehabilitation, she decides to allow the whole Emergency
department to access her vitals data in order to let her
new friends follow her progress (rule r5). In this situation,
there is a conflict between r4 and r5 when Bob wants to
access Anna’s vitals. Bob still can’t access any data of
Anna, since r4 is considered to have precedence over r5
since the target of r4 is more specific than the target of
r5, but David who is also affected by r5 can access Anna’s
vitals. The accesses at this point are presented in Table V.

Finally, Anna decides to share her vitals to Bob and she
adds a new rule, r6, to do so, but forgets to remove r4.
These two rules contradict each other: they have the same
priority, and one is not more specific than the other. In
that case, a prohibition has precedence over a permission.
Bob’s access is unchanged: he can’t access Anna’s data,
unless there in an emergency context where Anna’s life is
threatened. The final rule base of this example is presented
in Table VI and with the graphs in Fig. 4.

Rule Resource Subject Pri. Mod. Cond.
r1 Patient Emergency 1 + patient life is threat-

ened
r2 Patient GP Physi-

cian
3 + the subject is the at-

tending physician
r3 Vitals Nurses 3 + TRUE
r4 Patient

=
Anna

Bob 2 − TRUE

r5 Vitals Emergency 2 + TRUE
r6 Vitals Bob 2 + TRUE

TABLE VI: Example 3 rules (for the action read)

V. Formal model
In this section, our formalisation of SGAC is presented.

This formalisation provides a way to evaluate requests for
a given set of rules, and a way to verify properties.

A. Subject graph
The subject graph is denoted by S. We denote by

SUBJECT the set of all subjects and by PERSON the set
of all persons. Formally, S is described by S = (V, E, Z)
with:
• (V, E) is a DAG;
• V ⊆ SUBJECT is the set of the subjects;
• Z = V ∩ PERSON represents the persons, and
elements of V −Z are entities which represent groups
of persons;

• Z ⊆ sink(S) since a person is a sink of S.
S.E represents the inheritance relation: recall that a rule

on a subject s is inherited by all the successors of s in S.E+

There are two types of subject: persons and entities. A sink
of S can be either a person or an entity, but a person is
by definition a sink. A non-sink vertex is then an entity.

B. Resource Graph
As mentioned in Section III-B, data have been ab-

stracted by types into a resource type graph. Recall that

Fig. 4: Example 3 graphs with rules

an atomic element of data is called a document and can
be for instance a prescription, a radiography, etc... We
introduce the notion of parametric directed acyclic graph
(PDAG) as follows: R = (G, K) where G is a DAG and
H = (T, D, U, W) denotes constraints linking the DAG G
to the documents. More precisely, G = (V, E, P) where V
is the set of the vertices, E the edges and P the set of the
parametric vertices. We denote by DOCUMENT the set
of all documents.
• G.P denotes parametric vertices that are called
parametric groups and the elements of G.V −G.P are
called groups. Parametric groups introduce exactly
one parameter, like patient, visit etc...

G.P ⊆ G.V

• Sinks of R are document types, so they are parametric
groups since a type of document requires an identifier.

sink(R) = sink(G.V, G.E) ⊆ G.P ;

• D denotes the set of all the documents, and U the
type of a document. Each document has exactly one
type, so

U ∈ D → sink(R);

D ⊆ DOCUMENT

• W denotes a valuation of parameters of the docu-
ments. The parameter valuation W is defined for each
document and associates a document with a (partial)
function between parametric groups and parameter
values. It is a partial function since a document does
not use all the parameters of the graph, but only
those of its ancestors. Since each document has unique

attributes, valuation of parameters is defined for all
documents, thus we have

W ∈ D → (P 7→ T);

• W is defined for each parameter inherited by a docu-
ment,

∀d ∈ D • dom(W (d)) = G.E−1∗[U(d)] ∩G.P

C. Rule
A rule l is a septuplet which contains:
• a modality mod;
• a resource res with the valuation val of its parame-
ters;

• an action act;
• a subject sub;
• a priority pri;
• a condition con.
We denote by ACTION and RULE the sets of all

actions, and of all rules. Since a rule depends on a subject
graph and a resource type graph, we introduce the object
Policy, composed of a subject graph, a resource type
graph, and a set of rules. Each rule of the policy targets
elements of the graphs of the policy. Formally, we denote
by P = (S, R, L) a policy and we have:
• S = (V, E, P) a subject DAG;
• R = (G, H) a resource type PDAG;
• L ⊆ RULE the set of rules of the policy.
We have to link the rules of a policy to the graphs by

the following constraints:
• the subject is a person of S:

∀l ∈ L • l.sub ∈ sink(S)

• the action belongs to ACTION and the priority is a
positive real:

∀l ∈ L • l.act ∈ ACTION

∀l ∈ L • l.pri ∈ R+

• l.res is a vertex of R.G.V and l.val is a valuation of
parametric groups of R.G.P with adequate values:

∀l ∈ L • l.res ∈ R.G.V ∧ l.val ⊆ R.G.P ×R.H.T

• the only possible modalities are permission, and pro-
hibition;

∀l ∈ L • l.mod ∈ {permission, prohibition}

We also introduce the function documents:

documents(R, v, K) = {d|d ∈ R.H.D ∧
R.H.U(d) ∈ sink(R, v) ∧ K ⊆ R.H.W (d)}.

The function documents(R, v, K) returns all documents
reachable from vertex v in PDAG R with document
parameter valuation K.
For example, documents(R,Visit, {patient 7→ Simon})

denotes the set of all documents issued during any visit of
patient Simon. The blood test of the example of Fig. 2b
denoted by bt has the following associated parameters:

R.H.W (bt)
= {patient 7→ Simon, visit 7→ 2, id 7→ 123}
⊇ {patient 7→ Simon}
= K,

thus bt ∈ documents(R.H,Visit, {patient 7→ Simon}).

D. Request

We define a request q as a triplet (sub, act, doc) where:
• sub ∈ PERSON is the person initiator of the request;
• act ∈ ACTION is the action sub wants to do;
• doc ∈ DOCUMENT is the document targeted by the
action act.

Do note that a request is made by one person and only
targets one document at a time.

E. Request evaluation

The approach to evaluate a request is the following:
• extract all rules applicable to the request;
• sort extracted rules and represent them by a rule
DAG;

• evaluate the request from the rule DAG.

Fig. 5: Illustration of the partial order relation ≺

1) Rule extraction: to this end, we introduce the func-
tion Rules(P, q) for a policy P and a request q:

Rules(P, q) = {l | l ∈ P.L ∧ sub ∧ act con ∧ doc}

where:
• sub := q.sub ∈ (P.S).E∗[{l.sub}];
• act con := (l.act = q.act) ∧ evalf (l.con);
• doc :=

(P.R.U)(q.doc) ∈ P.S.E∗[l.res]
∧ l.val ⊆ P.R.W (q.doc)

• the function evalf (f) evaluates the formula f , taking
into account values of variables occurring in f .

Then for a policy P and a request q, Rules(P, q) desig-
nates all rules of P.L of which:
• action corresponds to q.act;
• subject is q.sub or an ancestor of q.sub;
• condition is evaluated to TRUE ;
• reachable documents contains q.doc.
2) Rule ordering: once we have all applicable rules, we

need to sort them. We therefore introduce a partial order
relation ≺ defined as follows :

∀x, y ∈ RULE •
x ≺ y

⇔
y.pri < x.pri

∨ (x.pri = y.pri ∧ y.sub ∈ S.E+[{x.sub}])

This relation ≺ captures the fact that precedence is given
to the rule with a lower priority or, at equal priority, to
the rule targeting the lower subject (inclusion-wise). This
order does not take into account the resources targeted by
a rule. For instance, in Fig. 5, we suppose that r1, r2, r3
and r4 share the same priority. We have then r1 ≺ r2,
r1 ≺ r3, r2 ≺ r4, r3 ≺ r4 and finally r1 ≺ r4. Note that r2
and r3 can’t be compared with ≺.
If r1, r2, r3 and r4 are the only applicable rules then

precedence over the other rule would be given to r4 since it
is the only maximal element (there is no other rule r′ such

that r4 ≺ r′). But what happens when there are more than
one maximal element? Let’s take the previous example,
and remove r4. We have r1 ≺ r2 and r1 ≺ r3, but r2 and
r3 still can’t be compared. We then define another partial
order on rules, noted “<”. The set of maximal elements
of the set Rules(P, q) with the relation ≺ is denoted by
max≺. Formally,

max≺ = {x ∈ Rules(P, q) | @y ∈ Rules(P, q) • x ≺ y}

We define < on rules as follows:

∀x, y ∈ Rg.V •
x < y

⇔
x ≺ y

∨ (x, y ∈ max≺
∧ y.mod = prohibition
∧ x.mod 6= y.mod
)

The partial order < extends ≺: in the case there are
more than one maximal element, precedence over the per-
missions are given to the prohibitions. Thus ordered rules
can be represented in the DAG RgP,q which is calculated
from a request q in the policy P . RgP,q is defined by:

– RgP,q.V = Rules(P, q);
– RgP,q.E is the covering relation of <, which is in our
case equal to the transitive reduction of <, in order
to find the immediate successor precedence-wise.

3) Rule graph analysis: The rule graph RgP,q contains
all rules applicable to a request q in a policy P ordered by
precedence. Thus the rules from sink(RgP,q) have prece-
dence over the other. We denote by the function eval(P, q)
the evaluation of the request q in the policy P ; eval(P, q)
returns TRUE if q is approved. In order to determine eval:
1) we determine first all applicable rules by calculating

Rules(P, q);
2) we create the DAG RgP,q;
3) we verify the following property:

Prop(P, q) := sink(RgP,q) 6= ∅
∧ ∀l ∈ sink(RgP,q) • l.mod = permission.

We define eval(P,q) as follows:

eval(P,q) := evalf (Prop(P, q))

If all sinks of Rg are permissions, then a permission is
returned and eval returns TRUE . If Rg.V is empty (i.e.,
no rules are applicable), a prohibition is returned and eval
returns FALSE .

As noted before, < ensures that all sinks of Rg have
the same modality. To see this, let r1, r2 ∈ sink(Rg) with
r1.mod 6= r2.mod. There are two cases:
• r1.pri = r2.pri: according to the definition of <,
we have r1 < r2 or r2 < r1, which is absurd since
r1, r2 ∈ sink(Rg).

• r1.pri 6= r2.pri then we have r1 < r2 or r2 < r1, which
is absurd.

Thus we have the following properties for eval:

eval(P, q)⇔
∧ ∃l ∈ sink(RgP,q) • l.mod = permission

and

eval(P, q)⇔
Rules(P, q) 6= ∅

∧ @x ∈ max≺ •
x.mod = prohibition

The first says that if a sink of RgP,q is a permission, then
access is granted. The second says that if there is at least
one applicable rule and if there is no prohibition in the
maximal elements of Rules(P, q) wrt ≺, then access is
granted.

F. Example
Let’s say that the patient Anna is to be hospitalised in

the CHUS. She did work there when she was a nurse and
had befriended most of her former colleagues, but also had
some rivals like Alice. Anna decided to share her labora-
tory data to her nurse friends except for Alice and general
practice physicians. She is aware that in the emergency
department, physicians can access the all records of the
patient, while that patient is under their care. Since she
knows personally some of these physicians, she decides to
prevent the department from accessing her records. But
in the case her life is threatened, regulations and laws
permit emergency physicians to access her records in order
to provide faster and better medical care. We denote by P1
the policy containing all the previous rules, the subjects
and resources. We have the following rules presented in
the Tab. VII as P1.L. We use Fig. 1 as the subject graph
P1.S and Fig. 2a as the resource graph P1.R
We suppose that Anna’s EHR only contain two blood

tests bt1, bt2 and a psychiatry report pr1. bt1 has been
issued during the first visit, and bt2 and pr1 during
the second visit. For this example, P1.R only contains
Anna’s documents. Formally, we introduce the documents
in P1.R.H, which we simply denote by H in the sequel:
• H.D = {bt1, bt2, pr1};
• H.U = {bt1 7→ Blood, bt2 7→ Blood, pr1 7→ Report} ;
• H.W =
{bt1 7→ {Patient 7→ Anna, V isit 7→ 1, Blood 7→ 1},
bt2 7→ {Patient 7→ Anna, V isit 7→ 2, Blood 7→ 2},
pt1 7→ {Patient 7→ Anna, V isit 7→ 2, Report 7→ 1}}.

We then have:

documents(P1.R,Patient,Patient 7→ Anna) = {bt1, bt2, pt1}.

Let’s assume that Alice wants to access bt1. Let’s denote
by q1 the request (Alice, read, bt1).

Rules(P1, q1) = {r1, r2}

Rule Resource Subject Pri. Mod. Cond.
r1 Laboratory (Patient = Anna) Nurse 2 + TRUE
r2 Laboratory (Patient = Anna) Alice 2 − TRUE
r3 Laboratory (Patient = Anna) GP Physician 2 + TRUE
r4 Patient Emergency 3 + the subject is the attending physician of the data owner
r5 Patient = Anna Emergency 2 − TRUE
r6 Patient Emergency 1 + data owner’s life is threatened

TABLE VII: Rule Base Example, for the action read

We then calculate RgP1,q1 .E = {r1 7→ r2} since Alice be-
longs to the subject Nurse. We have sink(RgP1,q1) = {r2}.
Thus: eval(P1, q1) = false. Moreover, in all possible con-
texts, Alice can’t access Anna’s data, since RulesRgP1,q1

will not vary with contexts.
Now Bob wants to access bt2, q2 = (Bob, read, bt2). We

suppose that Anna is fine, and that Bob is her attending
physician.

Rules(P1, q2) = {r3, r4, r5}

Since, Bob belongs to GP Physician and Emergency, he
is affected by any rules targeting one of the two entities.
The calculus of RgP1,q2 .E is a bit trickier than before: we
have r4 < r3 and r4 < r5 because r4 ≺ r3 and r4 ≺ r5
but r3 and r5 are incomparable with ≺. In fact, r3 < r5
since they are both maximal elements and r5 is a prohi-
bition and r3 is a permission. Then we take the transitive
reduction of <, thus RgP1,q2 .E = {r4 7→ r3, r3 7→ r5}. We
have then sink(Rg) = {r5}. Bob’s request is thus denied.
But in an emergency context, where Anna’s life would

be threatened, Bob would have access to this data, more
precisely, to all Anna’s data, since sink(RgP1,q2) = {r6} in
this context for any data requested by Bob.

G. Potential danger detection
We are working on the formalisation of SGAC in B [2]

and in Alloy [3]. This allows for the detection of potential
dangerous situations, for instance when the patient hides
important data from the medical staff. In that case, the
following property must hold for the patient p within the
policy P :

∀d ∈ documents(P.R,Patient, {Patient 7→ p}),
∃i ∈ (P.S).Z • eval(P, (i, read, d))

Model checking this property allows for counter-example
exhibition, thus identify a patient who has concealed all
his/her data, and warn him/her about a potential danger.
This verification can be done for all patient:

∀p ∈ ran(P.R.H.W)[Patient],
∀d ∈ documents(P.R,Patient, {Patient 7→ p}),

∃i ∈ (P.S).Z • eval(P, (i, read, d))

This property can be simplified into:

∀d ∈ documents(P.R,Patient, {}),
∃i ∈ (P.S).Z • eval(P, (i, read, d))

Finding a patient who has all of his data hidden is the
same as finding a document which is completely hidden.
Moreover, our formalisation of SGAC allows for access
verification.
• Determination of necessary conditions for a subject to
access a resource: it is possible to determine a formula
which must hold in order to authorise a request.

• Redundant rule detection; a rule is said redundant
within a policy if the requests accepted by the policy
is the same with and without the rule.

• Determination of the data accessible by a subject:
since we can determine the result of a request, we
can determine all accessible documents for a given
subject.

VI. Related Work
RBAC (Role Based Access control) [4], [5], is a classic

access control model which uses the notions of user, role,
operation, object and session. In order to gain privileges,
which are represented by a pair (operation, object), the
user must have activated one of his roles in a session that
has the privileges needed. There are two additional fea-
tures: role hierarchy allows for privilege inheritance among
roles, and separation of duty constraints prevent a user
from activating/being assigned to specified combinations
of roles. Formalisation of RBAC has been done in Z [6] and
in B [7]. Verified properties on those formalisation are:
• role activation: a role can be activated only if it is
assigned to the user;

• role hierarchy: a role properly passes assigned privi-
leges to its children, and the role hierarchy is acyclic;

• separation of duty all constraints of separation of duty
hold.

RBAC allows privilege grouping, thanks to roles and role
inheritance, but it does not support prohibition, condi-
tions, priority, and resource inheritance. This makes the
management of complex fine-grain policies quite difficult.
Thus, RBAC does not satisfy the requirements of SGAC.
OrBAC [8] (Organisation-Based Access Control), is a

logic-based access control model which takes into account
RBAC weaknesses and fixes some of them. It reuses the
notions of role, user, action, object, and adds some new
concepts: i) activity, an abstraction of actions, ii) view, an
abstraction of objects, iii) contexts, which allow for the
expression of complex rule conditions, iv) prohibition, v)
priority in order to manage conflicts, and vi) organisation.

The concept of organisation is used to parameterise assign-
ment of roles to users, of views to objects, and of subjects
to roles. It supports two kinds of rules: organisational
rules that use abstract notions, and concrete rules that
use concrete notions. Conflicts are detectable by static
checking with the Prolog-based tool MotOrBAC [9]. If two
organisational rules with different modalities are applica-
ble to the same abstract concepts, then a potential conflict
is detected. This conflict is only potential since there may
not exist a common concrete entity (subject, action or
object) for which the two organisational rules apply. The
user can solve a potential conflict by modifying the priority
or the rules, by adding separation constraints, or by just
ignoring the conflict when the user knows that there is
no concrete entity for which the two organisational rules
simultaneously apply. Inheritance among roles or views
can be specified by using logic rules. OrBAC is powerful
enough to satisfy the SGAC requirements, but its logic-
based approach may suffer from performance problem for
a very large number of rules, since its execution engine
is based on a prolog-like language. Conflict management
also requires manual intervention, whereas SGAC uses an
ordering that forbids conflicts.

Ponder [10] has a domain hierarchy which contains
resources and subjects in the same graph. A rule in Ponder
has a subject, a resource, an action, a modality and a
condition. It can also be marked as final to have prece-
dence over another rule not marked as such. In case both
are/are not marked final, if their subjects are comparable,
then precedence is given to the rule with the more specific
subject, and if their subjects are the same, then precedence
is given to the rule with the more specific resource. Finally,
if their subject are not comparable, rules marked as final
become normal and if there still is a modal conflict then
Ponder returns a prohibition. Ponder does not include
a rule priority attribute, and it uses a single graph to
represent both subjects and resources, which cannot be
used in our case where there is a huge number of resources
and subjects. Moreover, its conflict management is not
adapted to the SGAC requirements.

XACML [1] (eXtensible Access Control Markup Lan-
guage) is an attribute-based access control language. A
rule has a target defined by a subject, an action, a resource,
a condition, an effect which can be either permit or deny.
There is no native inheritance among subjects or resources.
Tree-like inheritance can be simulated by using paths for
resources and subjects identifiers. Precedence among rules
is managed by using a rule combination algorithm. The
basic rule combination algorithms are:

• permit-overrides: it returns permit if at least one
applicable rule returns permit;

• deny-overrides: it returns deny if at least one applica-
ble rule returns deny;

• first applicable: it returns the effect of the first appli-
cable rule.

XACML satisfies most of the SGAC requirements, but
its weak support of inheritance and its management of
conflicts make it difficult to manage large security policies.
It also suffers from poor performance when a large number
of rules are used. Brians [11] formalises XACML with
CSP in order to simulate policies. Using CSP has some
drawbacks: conditions are not handled, properties can
not be always specified in CSP and our own combining
algorithms can’t be added easily.
Table VIII summarises the difference between the dif-

ferent models for which a formal model exists.

VII. Performance comparison
Since XACML is an industrial standard and that it is

very close to satisfying SGAC requirements, we tried to
simulate SGAC policies in XACML using paths and the
rule combining algorithm first-applicable. The other rule
combination algorithms do not fit the SGAC requirements.
To simulate SGAC policies in XACML, we proceed as

follows. We define three policies, one for each level of
priority (law, patient and hospital). We use first-applicable
as the policy combination algorithm. Within a policy,
we order rules according to the subject hierarchy and
modality, enumerating the subject graph in a post-order
fashion (i.e.. bottom-up). We use first-applicable as the
rule combination algorithm of a policy. SGAC rule subjects
are translated as a regular expression of the form “∗s∗”.
A request q = (si, a, r) is rewritten using the XACML
context handler as q = (s1/ . . . /si, a, r), where s1/ . . . /si

is the path from the root of the subject graph to the vertex
si targeted by the request. Of course, this only works when
the subject graph is a tree, in which case there is a single
path from the root to si. A request can then match any
rule that applies to any ancestor subject of si, since rule
subjects are expressed as regular expression matching any
path that contains the rule subject.
To compare the performance of XACML with SGAC,

we have used Balana [12], an open-source implementation
of XACML based on Sun’s XACML implementation. The
tests were performed on a server running a virtual machine
(Intel(R) CPU 2.67 GHz, 4.00 GB RAM). Balana is
written in Java. SGAC is written in NodeJS.
We have generated SGAC policies in a random fashion

using a program that generates a subject tree and a
resource tree with depth h and node branching factor b,
which gives a tree of size (bh − 1)/(b − 1). Rules are ran-
domly generated. The size of the trees ranged from 1093 to
21845 vertices. Fig. 6 shows the average request processing
time versus the number of rules given in thousands. Here
are some of the conclusions we drew from these results.
• Request processing time with XACML is significantly
longer than SGAC’s to evaluate the same request.
When the number of rules is important (e.g., 100 000
rules), SGAC is in average 300 times faster.

• Request processing time with XACML increases lin-
early with the number of rules whereas SGAC’s is

Model Native Subject
Hierarchy

Native Resource
Hierarchy

Dynamic
Rules

Explicit
prohibition

Autonomous Conflict
Management

Ease of Rule
Expression

RBAC
√

× × ×
√ √

OrBAC
√ √ √ √

×
√

XACML × ×
√ √ √

×
SGAC

√ √ √ √ √ √

TABLE VIII: Comparison between access control models having a formal model

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100 120 700 1000

avg	request
proc.	time

(ms)

Nb	of	Rules	(thousands)

XACML

SGAC

Fig. 6: Performances summary

near constant (≤ 2 ms in average for up to 1M rules,
and a maximum of 7 ms). SGAC uses an n log n
algorithm for indexing rules at system initialisation,
where n is the size of the subject graph, and a hash
table provides a near constant time for fetching rules
applicable to a request.

• When the number of rules is high (200 000 rules for
instance), XACML cannot load the file containing the
policies: the error returned refers to insufficient Java
heap space, which remained even after increasing the
memory to 12 GB on a 64-bit architecture. SGAC
could process all tests on a 4GB virtual machine with
a 32-bit architecture. XACML policies are written in
XML, and they are quite verbose.

VIII. Conclusion
We have proposed SGAC, an innovative access control

method, to meet the EHR access control and consent
management requirements of a large hospital in Canada
(CHUS). SGAC uses an intuitive ordering on rules to
manage rule conflicts. This ordering uses priority to man-
age the different providers of rules and their precedence
according to the applicable laws. Subject specificity and
modalities are used to order rules of the same priority.
SGAC’s implementation can manage large policies (at
least 1M rules) and large subject and resource graphs. Its
implementation performs significantly better than Balana,
an open-source implementation of XACML. SGAC’s ac-
cess control model offers flexibility in managing policies
and in satisfying various laws on privacy in Canada. It
should be applicable to other legislations in other coun-
tries, and to other application domains, like banking,
insurance, social networks, government services, etc. In
order to ensure patient safety, we have proposed a formal
model of SGAC policies to enable automated analysis of

policy properties. In future work, we plan to explore tools
like Alloy [3], ProB [13] and Yices [14], to automatically
analyse SGAC policies.

Acknowledgments
This research was funded by the Agence de la santé et

des services sociaux de l’Estrie (ASSS). In particular, the
authors would like to thank Hassan Diab, of ASSS-CHUS,
and Mohammed Ouenzar, of Université de Sherbrooke
(UdeS), for their contribution in defining SGAC, and all
the SGAC development team at UdeS and ASSS-CHUS.

References
[1] E. Rissanen, eXtensible Access Control Markup Language

(XACML) Version 3.0. OASIS, 2010.
[2] J. Abrial, The B-book - assigning programs to meanings. Cam-

bridge University Press, 2005.
[3] D. Jackson, Software Abstractions: Logic, Language and Analy-

sis. MIT Press, 2012.
[4] D. F. Ferraiolo, Role-Based Access Control, Second Edition.

Artech House, 2006.
[5] R. S. Sandhu, E. J. Coynek, H. L. Feinsteink, and C. E.

Youmank, “Role-based access control model,” IEEE Computer,
vol. 29, no. 2, p. 38–47, 1996.

[6] D. J. Power, M. Slaymaker, and A. Simpson, “On Formalizing
and Normalizing Role-Based Access Control Systems,” The
Computer Journal, vol. 52, no. 3, pp. 305–325, 2009.

[7] N. Huynh, M. Frappier, A. Mammar, R. Laleau, and J. Deshar-
nais, “Validating the rbac ansi 2012 standard using b,” in ABZ,
ser. Lecture Notes in Computer Science, Y. A. Ameur and K.-D.
Schewe, Eds., vol. 8477. Springer, 2014, pp. 255–270.

[8] A. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin, “Organiza-
tion based access control,” in Policies for Distributed Systems
and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th
International Workshop on, June 2003, pp. 120–131.

[9] F. Cuppens, N. Cuppens-Boulahia, and C. Coma, “MotOrBAC:
un outil d’administration et de simulation de politiques de sécu-
rité,” in Security in Network Architectures (SAR) and Security
of Information Systems (SSI), First Joint Conference, 2006, p.
6–9.

[10] G. Russello, C. Dong, and N. Dulay, “Authorisation and con-
flict resolution for hierarchical domains,” in POLICY. IEEE
Computer Society, 2007, pp. 201–210.

[11] J. Bryans, “Reasoning about XACML policies using CSP,” in
In SWS ’05: Proceedings of the 2005 workshop on Secure web
services. ACM Press, 2005, p. 28–35.

[12] Balana. [Online]. Available: https://github.com/wso2/balana
[13] M. Leuschel and M. J. Butler, “ProB: an automated analysis

toolset for the B method,” STTT, vol. 10, no. 2, pp. 185–203,
2008. [Online]. Available: http://dx.doi.org/10.1007/s10009-
007-0063-9

[14] B. Dutertre, “Yices 2.2,” in Computer-Aided Verification
(CAV’2014), ser. Lecture Notes in Computer Science, A. Biere
and R. Bloem, Eds., vol. 8559. Springer, July 2014, pp. 737–
744.

