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Abstract. In light of the significant strides made by large language
models (LLMs) in the field of natural language processing (NLP) [5],
our research seeks to evaluate and contrast their proficiency in estab-
lishing associations within the realm of cybersecurity. Our experimental
framework involves juxtaposing actual connections from various cyber-
security knowledge graphs (including MITRE CAPEC, D3FEND, and
CVE connections to ATT&CK) against predictions made by LLMs using
semantic textual similarity (STS). These connections span a broad spec-
trum, encapsulating diverse abstractions of threat descriptions, attack
patterns, defense strategies, and vulnerabilities. The language models
chosen for this study are varied, comprising state-of-the-art models from
STS leaderboards, LLMs (GPT3.5 and PaLM), and ATTACK BERT [1],
a cybersecurity domain-specific language model. Our experiments pro-
vide valuable insights into the differentiation between language models
and data sources, thereby facilitating the broader application of STS in
cybersecurity.
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1 Introduction

The ever-increasing reliance on computer systems and digital technologies has
led to a corresponding rise in cybersecurity threats, posing a significant risk to
the security and integrity of cyber assets. As organizations increasingly depend
on interconnected networks and digital infrastructures, the potential vulnerabil-
ities have expanded, necessitating robust cybersecurity measures. Due to this
trend, the demand for cybersecurity specialists has surged, reflecting the critical
need for expertise in safeguarding sensitive information and defending against
sophisticated cyber attacks. However, this growing demand is exacerbated by
a pervasive talent shortage within the field of cybersecurity [6], presenting a
challenge to organizations seeking to reinforce their cyber-defenses. Recent re-
ports indicate that cybersecurity analysts overwork, leading to potential gaps in
security coverage and increased vulnerability to cyber threats [17].
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Artificial Intelligence (AI) has emerged as a crucial pillar in advancing cy-
bersecurity, addressing the growing complexity of cyber threats. AI-powered
tools can detect attacks in real-time, automating incident response processes
and streamlining threat hunting. As the amount of data generated by connected
devices increases exponentially, AI becomes essential in analyzing this data to
mitigate cyber threats [16].

One of the most important ways AI can help alleviate the pressure on cyber-
security analysts is making associations among concepts and entities. Consider
the following examples of tasks in the workflow of a cybersecurity analyst:

– finding the underlying goal of an attack (identifying the attacker’s motives
and objectives)

– predicting the next possible move of an attacker (threat prediction)
– suggesting defense mechanisms for threats (threat mitigation)
– anticipating possible threats based on vulnerabilities (proactive cyber risk

management)

All of these tasks include recognizing semantic relationships, a capability that
recent language models are increasingly adept at developing [13]. This notion
has been previously explored for a narrow use-case, namely connecting vulner-
abilities to threats [1], yet its general usability in the broader context remains
uncharted. To our knowledge, currently there is no proposed general method of
determining how competent AI systems are in making associations in the context
of cybersecurity.

AI holds promise for enhancing cybersecurity efficiency, yet it faces chal-
lenges such as a lack of contextual understanding, leading to misclassifications.
The necessity for transparency and interpretability in critical cybersecurity oper-
ations is not met by the opaqueness of large neural networks. Additionally, LLMs
are prone to “hallucination”, producing plausible but incorrect information [12],
which undermines their reliability in cybersecurity contexts where accuracy is
paramount. However, leveraging the embeddings from language models (LMs)
could offer a compromise, harnessing LM strengths while mitigating generative
AI weaknesses. Embeddings represent complex data as high-dimensional vec-
tors, facilitating various algebraic operations. In cybersecurity, embeddings have
been effectively applied to tasks like linking vulnerabilities to potential exploits,
providing context-sensitive insights that are crucial for threat intelligence and
incident response [1, 3]. Their compatibility with existing cybersecurity systems,
such as intrusion detection systems (IDS) and security information and event
management systems (SIEM), renders them a valuable tool for enhancing secu-
rity measures.

Considering the advantages that embeddings offer for cybersecurity applica-
tions, our research focuses on evaluating the proficiency of current LMs in dis-
cerning a variety of semantic relationships pertinent to cybersecurity, including
attack types, patterns, vulnerabilities, and countermeasures. We leverage rela-
tionships derived from cybersecurity knowledge bases to assess and compare the
effectiveness of different LMs, thereby enabling the combination of various LMs
to foster innovation in their application to cybersecurity tasks, such as ensemble
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(a) ATT&CK (b) CVE

(c) CAPEC (d) D3FEND

Fig. 1: Examples from threat and defence description data sources

approaches. Preliminary findings underscore the promise of LM embeddings in
identifying semantic connections within the cybersecurity domain.

The subsequent sections of this paper are structured as follows: Section 2
provides an overview of the relevant literature and background information; Sec-
tion 3 delineates the methodology employed in our study; Section 4 presents the
results of our experimental evaluations; and the concluding section discusses
implications for future research.

2 Background and Related Work

Background. Cybersecurity knowledge bases such as MITRE ATT&CK, CAPEC,
D3FEND, and CVE play a pivotal role in the workflow of cybersecurity analysts,
each covering an aspect of defense. ATT&CK enumerates and taxonomizes sin-
gular attack tactics, techniques, and procedures (TTPs), enabling analysts to
perform cyber-threat intelligence (CTI), intrusion detection, risk assessment,
and many other operations [15]. CAPEC catalogs known and common patterns
of attack. In CAPEC, attack patterns are described and connected to related
TTPs and weaknesses. CVE is the common vulnerability enumeration database,
containing short descriptions of exposed vulnerabilities. Vulnerabilities are com-
puter system weaknesses that enable attackers to take advantage. They are con-
tinuously discovered, exposed, exploited, and patched by developers, analysts,
and attackers. D3FEND focuses on the opposite aspect compared to the afore-
mentioned; it contains a top-down hierarchy of defensive strategies. Entries are
linked to ATT&CK to mark the threats they can mediate. These knowledge
bases contain cybersecurity domain knowledge and connections among them
can be harbored as a testing ground for assessing LMs’ capability in recognizing
cybersecurity semantic similarities. First, previous cases of LM application in cy-
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bersecurity are presented. Then in the next sections, the generalized comparison
grounds are presented contrasting LMs’ general capability in this domain.

Related Work. Language models present immense opportunities for appli-
cations in cybersecurity, owing to their ability in processing natural language
content. This ability can be exploited for matching threats in emails, messaging
apps, social media, event logs, vulnerability descriptions, etc. with high speed.
Finding matches using LMs is achieved in three main ways: using a corresponding
task in MLP, general purpose language models, and specialized language models.
Wåreus and Hell introduced a method that can track vulnerabilities in software
versions automatically [18] by utilizing named entity recognition (NER). Kuppa
et al developed a joint word embedding space to match ATT&CK and CVE
entries [11]. General purpose LMs for generating sentence embeddings such as
Sentence BERT and its variations also proved useful in matching CAPEC and
CVE entries [10], and expanding D3FEND-ATT&CK connections for incident
response [3].

First endeavours for developing a domain-specific language models were fine-
tuning BERT, a general-purpose base language model, on cybersecurity corpus
using the masking technique [14, 2] optimized in performing NER and senti-
ment analysis, and capable of generating word embeddings. After, Abdeen et
al introduced ATTACK BERT, a specialized cybersecurity sentence embedding
model, and used it to match CVE and ATT&CK entries outperforming Sentence
BERT. With the advent of LLMs, their generative capabilities are utilized [4, 7].
However, their embedding capabilities are not yet examined.

Introducing new concepts to cybersecurity where robustness and tangibilty
are vital, requires investigation beyond narrow use-cases. By exploiting the infor-
mation already used in operation, our approach introduces a testing ground en-
compassing several aspects of semantic connections in cybersecurity. This high-
lights the distinction of LMs for applications in cybersecurity and enables subse-
quent research to continuously improve, and tangibly infuse cybersecurity tools
such as IDSs with the capabilities of modern LMs.

3 Methodology

3.1 Data

To assess LMs’ capability in recognizing semantic connections in the context of
cybersecurity, we extract descriptions and labelled connections among cyberse-
curity knowledge bases (ATT&CK, etc.), and then based on the description, LMs
can predict relationships using STS. By comparing the ground truth with LMs’
predictions, LMs’ capability in recognizing these relationships can be measured.

The selected datasets are not exhaustive. There exist other semantic connec-
tions among entries, though the existing definitions and connections are rigor-
ously reviewed by subject matter experts (SMEs) and the chosen sources are
already being used by cybersecurity analysts. Therefore, we assume that the
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Fig. 2: Data source connections Fig. 3: Processing pipeline

outlined relationships are evident, and they must be unmistakable for a cyber-
security analyst.

After extracting, cleaning, and preprocessing definitions and relationships,
definitions will be processed into embedding vectors using several language mod-
els. There are several ways to perform the preprocessing steps. For example, in
[1], a subset of the descriptions matching the attack vector templates are se-
lected. In contrast, our goal is to measure LMs ability in understanding and
generalizing definitions. So instead of snippets, embeddings of the whole defini-
tion documents are processed in this work. Moreover, contrary to previous works,
we expand the dataset to unambiguous adjacencies. For example, “CAPEC-25:
Forced Deadlock” is mapped to subtechnique “T1499.004: Endpoint Denial of
Service: Application or System Exploitation” in ATT&CK. In this instance, we
expand the labels to the subtechniques parent nodes: technique “T1499: End-
point Denial of Service”, and tactic “TA0040: Impact”. The validity of this
expansion is supported by the hierarchical tree structure of ATT&CK. Fig. 2
depicts the connections among data sources, marking the extended (indirect)
connections as dashed lines.

3.2 Similarity and performance measures

Having processed the documents to embeddings and extracted the ground truth,
LMs’ predictions can be measured. To achieve this using the common STS pro-
cess, cosine similarity between the embedding vectors are calculated, and the
top scoring vector pairs are selected (Fig. 3). For two vectors a⃗ and b⃗:

Cosine Similarity(⃗a, b⃗) =
a⃗ · b⃗

∥a⃗∥∥⃗b∥

So assuming the embedding function f⃗e calculates embeddings of a text se-
quence, for two text sequences a and b, the similarity score would be:

Similarity(a, b) = Cosine Similarity(f⃗e(a), f⃗e(b))
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Group Subtask Name Pair Count

Inter-ATT&CK
TecTac 227
SubTec 411
SubTac 558

CAPEC-ATT&CK
CapTac 271
CapTec 235
CapSub 156

D3FEND-ATT&CK
DefTac 795
DefTec 1271
DefSub 2631

CVE-ATT&CK
CveTac 2484
CveTec 2057
CveSub 498

Table 1: Pair counts for each subtask

In this study, similar to [1], we employ a similarity score to evaluate LMs’ pre-
dictive capabilities through various multilabel classification evaluation metrics:
recall@k, coverage error (CE), label ranking average precision (LRAP), and label
ranking loss (LRL). Each metric serves as a distinct indicator of performance
from various perspectives. Coverage error quantifies the average number of top
predictions needed to encompass all actual labels, with its maximum value being
the total number of labels. LRAP measures the percentage of top-ranked labels
that are correct, indicating the precision of the ranking process. Label ranking
loss (LRL) assesses the average ratio of incorrectly to correctly ranked labels,
providing insight into the model’s ranking accuracy. Lastly, recall@k determines
the fraction of true labels that appear among the top-k predictions, offering a
measure of the model’s ability to capture relevant labels.

3.3 Language Models

Selected language models for this work are from the Massive Text Embedding
Benchmark (MTEB) Leaderboard[8]. This list represents state of the art sentence
embedding language models in several tasks such as classification, clustering,
reranking, retrieval, STS along with information about the models’ size, em-
bedding dimensions, and maximum accepted tokens. It is continuously updated,
introducing more advanced models outperforming previous state-of-the-art. Our
curated selection features top-tier models from the MTEB leaderboard, alongside
two distinguished Large Language Models (LLMs): GPT-3.5 (the foundational
model behind ChatGPT) and PaLM. Additionally, we spotlight a specialized sen-
tence embedding model tailored for the cybersecurity domain: ATTACK BERT
(AB) [1]. Beyond these individual models, we also present a series of their equally
weighted ensembles, which are denoted with an ”E-” prefix.
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4 Experimental Evaluation

To perform the comparison, first we prepare a dataset of pairs containing rela-
tions between knowledge base entries in section. Due to the variety of the data
sources, and thus their different use-cases, the data is broken to several parts
to highlight their difference, and they will be investigated as different subtasks.
First, each of these subtasks will be explained, then the experiment results will
be presented. Finally, results will be inspected in the corresponding section.

4.1 Subtasks

For our study, we collect data pertinent to specific subtasks from their respec-
tive sources, enabling us to evaluate language models’ performance on individ-
ual subtasks (as shown in Fig. 4) and their combined average (refer to Ta-
ble 2). Subtasks are designated based on cross-referencing elements from var-
ious cybersecurity frameworks: Tactics (Tac), Techniques (Tec), and Subtech-
niques (Sub) from ATT&CK; Patterns from CAPEC (Cap); Vulnerabilities from
CVE (Cve); and Defense Strategies from D3FEND (Def). Within the MITRE
ATT&CK framework, we examine the structural relationships—TecTac (Tech-
niques to Tactics), SubTec (Subtechniques to Techniques), and SubTac (Sub-
techniques to Tactics)—to assess LMs’ proficiency in matching abstract and
technical concepts. We apply a similar approach to analyze the interplay be-
tween CAPEC attack patterns (CapTac, CapTec, CapSub), CVE vulnerabilities
(CveTac, CveTec, CveSub), and D3FEND defense strategies (DefTac, DefTec,
DefSub). These subtasks are critical for understanding various aspects of cyber-
security. This structured approach allows us to dissect and quantify how well
LMs can discern and interpret the intricate web of relationships that define the
cybersecurity landscape.

The number of pairs available for each subtask is displayed in Table 1. For
these subtasks, measures (LRAP, coverage error, etc.) are calculated among pre-
dicted LM connections and ground truth labels, presented in Table 2. Moreover,
in Fig. 4 for each subtask, a sweep on the k parameter of recall@k has been
provided, demonstrates how LMs’ precision changes at according to the number
of top selected suggestions.

4.2 Results

Figure 4 aims to differentiate between subtasks, whereas Table 2 sheds light
on the performance from the perspective of LMs. The analysis reveals signifi-
cant variability in model effectiveness across subtasks and metrics, with ensem-
ble models surpassing both domain-specialized models such as ATTACK BERT
(AB) and LLMs.

Such fluctuations emphasize the impact that differing architectures, training
methodologies, and datasets have on a model’s ability to comprehend and pro-
cess various concepts effectively. By incorporating this diversity, ensemble models
enhance performance across various tasks. The recall@k metrics further reveal
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Language Model Variation CE LRAP% LRL Recall@5%

MiniLM all-MiniLM-L12-v2 15.10 66.3% 0.123 43.9%
MPNet all-mpnet-base-v2 15.18 68.0% 0.113 45.3%
RoBERTa all-roberta-large-v1 15.85 65.8% 0.115 43.4%
BGE bge-large-en-v1.5 15.37 68.3% 0.106 45.4%
GTE gte-large 14.58 68.4% 0.103 45.2%
ATTACK BERT basel/ATTACK-BERT 14.39 70.4% 0.096 46.7%
GPT3.5 text-embedding-ada-002 13.79 64.8% 0.132 42.5%
PaLM textembedding-gecko@001 12.96 70.0% 0.090 47.3%
E-LLM+AB GPT3.5 + PaLM + AB 12.31 72.0% 0.085 48.7%
E-LLMs GPT3.5 + PaLM 11.59 70.7% 0.090 48.7%
E-SLMs+AB BGE + GTE + AB 13.27 71.7% 0.088 48.4%

Table 2: Language models’ average results

that there isn’t a single model that consistently leads in performance across all
subtasks, thereby underscoring the importance of selecting models tailored to
specific tasks. For instance, GPT-3.5 shows prowess in discerning connections
between subtechniques but falls short in associating related tactics. The perfor-
mance in defensive tasks is particularly weak, with a maximum recall of 0.08 in
the top 5 selections, revealing a substantial deficiency in current models’ capac-
ity to automate defensive cybersecurity tasks. This aligns with prior studies that
have recognized the intricate and context-sensitive nature of these tasks [3, 9].

In other subtasks, the findings suggest that while the current LM embeddings
might not reach complete autonomy in recognizing relationships, they may still
play a crucial role in streamlining the decision-making process for analysts by
helping prioritize options. Notably, smaller LMs are shown to deliver perfor-
mance on par with their larger counterparts, offering a cost-effective solution
for scenarios requiring the processing of large volumes of data where deploying
LLMs may be financially impractical. Despite the intriguing insights these exper-
iments offer, the occasional discrepancies in performance across different metrics
signal a need for further investigation to confirm and refine these observations.

5 Conclusion and Future Work

This study evaluated LMs’ effectiveness in identifying semantic relationships
within the cybersecurity domain, leveraging established links between cyberse-
curity knowledge bases. Our findings indicate that singular and ensembled LMs
possess a certain level of proficiency in executing specific tasks, potentially reduc-
ing the workload for cybersecurity analysts. However, when it comes to devising
defensive strategies, further investigation is necessary. This research serves as
a preliminary step, suggesting that incorporating additional data sources could
enhance the robustness and reliability of the findings, thereby accelerating the
integration of natural language processing (NLP) advancements into cybersecu-
rity. Furthermore, the presented methodologies are poised for implementation in



10 Soltani et al.

current cybersecurity frameworks to provide practical value in real-world appli-
cations.
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