Modelling an Automotive Software System with
TASTD*

Diego de Azevedo Oliveira!® and Marc Frappier!

Université de Sherbrooke, Sherbrooke QC J1K 2R1, Canada

Abstract. At the ABZ2020 Conference, the case study track proposed
to model an Adaptive Exterior Light System and a Speed Control Sys-
tem: the former controls different exterior lights of a vehicle while the
latter controls the speed of a vehicle. This paper introduces a model for
these two case studies using Timed Algebraic State-Transition Diagrams
(TASTD). TASTD is an extension of Algebraic State-Transition Dia-
grams (ASTD) providing timing operators to express timing constraints.
The specification makes extensive use of the TASTD modularity capabil-
ities, thanks to its algebraic approach, to model the behaviour of different
sensors and actuators separately. We validate our specification using the
c¢ASTD compiler, which translates the TASTD specification into a C++
program. This generated program can be executed in simulation mode
to manually update the system clock to check timing constraints. The
model is executed on the test sequences provided with the case study.
The paper provides a comparison between the TASTD model and other
solutions presented at the ABZ2020 Conference. The advantages of hav-
ing modularisation, orthogonality, abstraction, hierarchy, real-time, and
graphical representation in one notation are highlighted with the pro-
posed model.

Keywords: ASTD - real-time model - ABZ2020 case study - TASTD - formal
method

1 Introduction

The ABZ2020 Conference case study [9] describes an adaptive exterior light
system (ELS) and a speed control system (SCS). The ELS controls several lights,
which are parts of various subsystems, like controlling side lights and comfort
functions. The SCS is a function that tries to maintain or adjust the vehicle’s
speed according to various external influences. Both systems are examples of
software systems present in modern vehicles.

In this article, we present our specification of the ABZ2020 case study to
demonstrate the usefulness of TASTD as a modelling language. We use ASTD

* Supported by Public Safety Canada’s Cyber Security Cooperation Program (CSCP)
and NSERC (Natural Sciences and Engineering Research Council of Canada).

https://orcid.org/0000-0002-9499-5728
https://orcid.org/0000-0002-4402-2514

2 D. de Azevedo Oliveira, M. Frappier

tools to generate executable code in C++, which could be deployed in an embed-
ded system. First, we specify our model with the ASTD editor, eASTD. Second,
we produce executable code with the ASTD compiler, cASTD.

To facilitate comparison with existing work, the structure of this paper fol-
lows the one proposed in the call for paper of the ABZ2020 case study track.
The subsequent subsections briefly present TASTD, its supporting tools, and
the distinctive features of our approach.

This paper is structured as follows. Section 2 describes our modelling strat-
egy. In Section 3, we take into account all requirements for both systems (ELS
and SCS), except a minor one which deals with the graphical user interface.
Section 4 presents the validation process of the case study model, and the dis-
cussion around the verification of the model. Previous solutions identified flaws
in the case study documentation. We confirm such issues in Section 5. Section 6
compares our TASTD model with those presented at the ABZ2020 Conference.
Lastly, Section 7 concludes the paper.

1.1 TASTD

Timed Algebraic State-Transition Diagrams (TASTD) [4] is a time extension
for ASTD [18]. ASTD allows the composition of automata using CSP-like pro-
cess algebra operators: sequence, choice, Kleene closure, guard, parameterized
synchronization, flow (the AND states of Statecharts), and quantified versions
of parameterized synchronization and choice. Each ASTD operator defines an
ASTD type that can be applied to sub-ASTDs. Elementary ASTDs are defined
using automata. Automaton states can either be elementary or composite; a
composite state can be of any ASTD type. Within an ASTD, a user can declare
attributes (i.e., state variables). Actions written in C++ can be declared on
automata transitions, states, and at the ASTD level; they are executed when a
transition is triggered. These actions can modify ASTD attributes and execute
arbitrary C++ code. Attributes can be of any C++ type (predefined or user
defined).

TASTD introduces time-triggered transitions, i.e., transitions triggered when
conditions referring to a global clock are satisfied. In ordinary ASTDs, only the
reception of an event from the environment can trigger a transition. The special
event Step labels the timed-triggered transitions. Step is treated as an event;
its only particularity is that it is evaluated on a periodical basis. The specifier
determines the value of the period according to the desired time granularity re-
quired to match system timing constraints. TASTD also introduces new ASTD
timing operators that can perform Step transitions: delay, persistent delay, time-
out, persistent timeout, and timed interrupt. TASTDs rely on the availability of
a global clock called cst, which stands for current system time. If the guard of a
Step transition is satisfied, the transition can be fired. TASTD is fully algebraic,
TASTD operators can be freely mixed with ordinary ASTD operator.

Modelling an Automotive Software System with TASTD 3

1.2 TASTD support tools

TASTD specifications can be edited with a graphical tool called eASTD and
translated into executable C++ programs using cASTD. The generated C++
programs can be used as an actual implementation of the TASTD specification.
cASTD can generate code for simulation, where a manual clock, which the spec-
ifier controls, replaces the system clock. The specifier can decide to advance the
clock to a specific time; the simulator will generate the Step events necessary to
reach the specified time. Environment events can be submitted at these speci-
fied times. We use a simulation to validate the provided scenarios discussed in
Section 4.

A new tool called pASTD is under development; it will permit to specify
TASTD attributes and actions using the Event-B language and generate proof
obligations for invariants declared on automata states and TASTDs. These proof
obligations are represented as theorems of a synthetic Event-B context that can
be proved using the Rodin platform. Such an Event-B-annotated ASTD speci-
fication could then be refined into an implementation by transforming actions
into BO actions, proving their refinement, and translating them into C using the
Atelier B tools.

1.3 Distinctive features of our modelling approach

Modularisation, Hierarchy And Orthogonality ASTD is an algebraic lan-
guage, in the sense that an ASTD is either elementary, given by an automaton, or
compound, given by a process algebra operator applied to its components. This
algebraic approach streamlines modularity. A model can be decomposed into
several parts which are combined with the process algebra operators. As it will
be described in Section 2, the case study is decomposed into several parts which
are specified separately and then connected with ASTD types synchronisation
or flow. Each ASTD contains a name, parameters, variables, transitions, actions,
and states (an initial state is required). An ASTD state may be of any ASTD
type, called sub-ASTD, and share its variables, transitions, and states with its
parents. With this modular and hierarchical structure, isolating an ASTD and
modifying its behaviour does not produce side effects in other ASTD. Modular-
ity also makes the specification easier to understand, because each component
can be analysed separately.

Time In TASTD, time is integrated into its syntax and its semantics. As por-
trayed by the case study requirements, time management is implemented with
clock variables or using TASTD operators. That allows us to produce executable
code satisfying the time constraints.

Graphical representation With ASTD graphical representation, to under-
stand the behaviour of an ASTD is to reason about its transitions and states.
ASTD visualisation is an advantage over other formal methods that only use
textual representation, which makes their specification harder to understand.

4 D. de Azevedo Oliveira, M. Frappier
2 DModelling Strategy

This section describes our modelling strategy and how the model is structured
and provides insights into how we approached the formalization of the require-
ments. The complete model is found in [3].

Model structure Our specification mainly uses two ASTD operators to struc-
ture the model. These are flow, denoted by W, and parameterized synchronisa-
tion, denoted by |[A]|. The flow operator is inspired from AND states of State-
charts, which execute an event on each sub-ASTD whenever possible. The pa-
rameterized synchronization operator executes two sub-ASTDs in parallel, and
they must synchronize on a set of events A. If A is empty, then the parame-
terized synchronisation is an interleave, denoted by |||. We can draw an analogy
between these three operators and Boolean operators. Operator |[]| acts like a
conjunction: Eq|[{e}]|E2 can execute an event e iff both E;y and Es can execute
it. It expresses a conjunction of ordering constraints on e given by E; and Fs.
It is a hard synchronisation. Operator WV acts like an inclusive OR: E; W E5 can
execute an event e iff either Fy, or E5, or both F; and Fs can execute it. It
is a soft synchronisation. Operator ||| looks like an exclusive OR: Ej ||| Ey will
execute e on either Ky or Fs, but on only one of them; if both E; and F5 can
execute e, then one of them is chosen nondeterministically.

ELS and SCS systems are loosely coupled [1], which means that each compo-
nent can handle some requirements independently. At start, we divide our model
into the elements that the user or the environment can manipulate, such as but-
tons, switches, and sensors, and the response on the actuators after manipulating
those elements. We call the former group the sensors and the latter group the
actuators. Figure 1 shows the ASTD Control, composed of sensors and actuators.
Each green box is a call to the ASTD of that name. ASTD Sensors combines the
various sensor ASTDs using an interleave operator; no synchronisation is needed
between the sensors, because each sensor has its own distinct set of events. Op-
erator ||| being commutative and associative, ASTD Sensors is shown here as
an n-ary ASTD. The ASTD model of a sensor describes the physical ordering
constraints on the events of that sensor. For instance, the ignition key cannot
do event putlgnitionOn without doing first insertKey. We shall illustrate such an
ASTD in Section 3.1.

The actuators are partitioned into two parts: speed actuators and light actu-
ators. The actuators are composed using a flow operator, because a sensor event
may influence several actuators, and a sensor event might influence an actuator,
depending on state. Thus, actuators are not synchronized, but composed with a
flow.

ASTD Control composes sensors and actuators also with a flow. ASTD CAR
in Figure 2 is the root (main) ASTD. It synchronises ASTDs Control and Sensors.
This means that ASTD Sensors is called twice: once within Control in a flow, and
once again at the root level in ASTD CAR in a synchronisation. This particular
pattern is used to enforce a priority on ordering constraints between sensors and

Modelling an Automotive Software System with TASTD 5

W Control ‘

W Actuators ‘ ||| Sensors
W Speed_Control ‘
pitman Rotary Cruise
Arm Light Battery Control
Emergency Speed Switch Mode
Brake Gauge
Camera Proximity Gas Pedal Doors
. Sensor
Cruise Speed
Control Limit
Brake Steering Darkness Hazard
W Light_Control Pedal Switch Switch
Cornering Direction — Cruise
Lights Indication Low Beams Key State Traffic §|gn Brightness Control
Detection
Lever
High Brake Light Brake nght Reverse
Beams Automatic
Gear

Fig.1. ASTD Control composing sensors and actuators

actuators. In order to accept a sensor event, it must first satisfy the physical
ordering constraints of that sensor. An actuator may refuse a sensor event that
is accepted by the corresponding sensor ASTD, because in its current state,
the actuator ASTD is not influenced by the sensor event and can ignore it. On
the other hand, a sensor event should not be accepted by ASTD CAR if the
actuator ASTD can execute it, but the sensor ASTD cannot execute it; that
would violate the physical ordering constraints of the sensor. Thus, using simply
a flow between sensors and actuators is insufficient, because it would allow the
system to accept a sensor event through the actuators, even if it is refused by
the sensor ASTD. This is why ASTD Control alone is insufficient and cannot be
the main ASTD. ASTD CAR synchronises Control with Sensors on sensor events,
so that CAR accepts a sensor event when both Control and Sensors can execute
it. ASTD Control always accepts sensor events that Sensors can accept, because
it combines Actuators and Sensors with a flow, which is not blocking.

CAR, |[All events present in Sensors]| ‘

Control Sensors

Fig. 2. Main ASTD of ELS and SCS

6 D. de Azevedo Oliveira, M. Frappier

Communication with shared variables ASTD allows the use of shared vari-
ables, which are called attributes in the ASTD notation. An attribute declared
in an ASTD may be used in guards and actions of its sub-ASTDs. Attributes are
used to communicate the state of a sensor to the actuator ASTDs; this allows
for the reduction of the number of states in automata. Sensor ASTDs update
attributes describing the state of a sensor. Actuator ASTDs read these attributes
to determine the acceptance of an event and to compute the actuator response.
For flow and synchronisation ASTDs, shared attributes must be used with care,
because their sub-ASTDs are executing in sequence. The semantics of the ASTD
requires commutativity on the execution of the actions in a flow F; W Fs, such
that it terminates on the same values of the attributes whether either E; or Fs is
executed first. Commutativity is easily ensured in our specification, because only
the sensor ASTDs update the sensor attributes, and sensor events in actuator
ASTDs do not read the value of sensor attribute in their guards or actions.

Table 1 presents the attributes declared in each ASTD. Attributes declared
in the root ASTD CAR indicate the current state of the sensors. For example,
attribute keyState indicates the state of the ignition key (Keylnserted, NoKeylIn-
serted, KeyInlIgnitionOnPosition). ASTD Speed_Control shares attribute speed-
Limit, a Boolean to indicate if the speed limit is on, and emergencyBrake, to
indicate if an emergency brake is necessary.

Component Variables

pitmanArmUD, pitmanArmFB, lightSwitch, keyState,
hazardSwitch, armoredVehicle, darknessMode, reverseGear,
voltageBattery, cameraState, steeringAngle, highBeamOn,

currentSpeed, engineOn, SCSLever, cruiseControlMode,

rangeRadarSensor, gasPedal, brakePedal, sCSLever,
safetyDistance, rangeRadarState, speedMode,
trafficSignDetectionOn, allDoorsClosed, oncommingTraffic,
brightnessSensor, cruiseControlOn
Actuators setVehicleSpeed
brakeLight, blinkLeft, blinkRight, tailLampLeft,
Light_Control tailLampRight, lowBeamLeft, lowBeamRight,
corneringlLightLeft, corneringLightRight
Speed_Control emergencyBrake, speedLimit
Table 1. Shared variable by components

CAR (root)

The complete model is composed of 66 automata, 1 closure, 26 synchronisa-
tion, 14 flow, 33 call, 1 persistent guard, 7 persistent delay, and 2 delays, for a
total of 150 ASTDs. These numbers are artificially high, because n-ary ASTDs
are currently not supported by the editor eASTD. Thus, an n-ary ASTD is
represented by 2n — 1 ASTDs, instead of simply n + 1 ASTDs. For instance,
an interleave Fy ||| B2 ||| E5 is represented by 5 ASTDS (Ei23, Fr2, E1, Ea, E3),

Modelling an Automotive Software System with TASTD 7

because F1o represents the interleave ASTD composing E; and Fs, and Eio3
composing F15 with E3.

Formalization of the requirements Tables 2 and 3 relate ASTDs and re-
quirements listed in [9]. Some requirements are present in several ASTDs as they
are related to different actuators. Time requirements, such as ELS-1 and SCS-8,
are covered with the use of event Step.

ASTD Requirements

ELS-1, ELS-2, ELS-3, ELS4,

ELS-5, ELS-6, ELS-7, ELS-8,
ELS-9, ELS-10, ELS-11, ELS-12,
ELS-13, ELS-23, ELS-29, ELS-47
ELS-14, ELS-15, ELS-16, ELS-17,
lowBeams |ELS-18, ELS-19, ELS-21, ELS-22,

ELS-28, ELS-29, ELS-47

ELS-24, ELS-25, EL.S-26, ELS-27,

directionIndication

corneringlLights ELS-29, ELS-45, ELS-47
BLS-30, BLS-31, BLS-32, ELS-33,
. ELS-34, ELS-35, ELS-36, ELS-37,
highBeams

ELS-38, ELS-42, ELS-43, ELS-44,
ELS-46, ELS-47, ELS-48, ELS-49
brakeLightAut |ELS-29, ELS-39, ELS-40, ELS-47
reverseLight Aut ELS-29, ELS-41, ELS-47
Table 2. Cross-reference between ASTDs and requirements for adaptive exterior light
system of [9]

3 Model Details

This section shortly describes the main modelling elements of our specification
following the structure explained in the previous section.

3.1 Sensors ASTDs

Sensor ASTDs describe the physical ordering constraints and the valid states
that the sensors can attain. For example, Figure 3 shows the ASTD key. This
ASTD is an automaton, and its states are NoKeylnserted, Keylnserted, Keylnlgni-
tionOnPosition, with initial state NoKeylnserted. The transitions represent valid
movements of the key. On each transition, the attribute keyState is updated.
Event putlgnitionOn turns the engine on, and attribute engineOn becomes true.
Event putlgnitionOff sets attribute engineOn to false as the engine turns off.

8 D. de Azevedo Oliveira, M. Frappier
ASTD Requirements
SCS-1, SCS-2, SCS-3, SCS-4,
SCS-5, SCS-6, SCS-7, SCS-8,
cruiseControl SCS-9, SCS-10, SCS-11, SCS-12,

SCS-13, SCS-14, SCS-15, SCS-16,
SCS-17, SCS-18, SCS-19

automatedControlVehicleAhead

SCS-20, SCS-21, SCS-22, SCS-23,
SCS-24, SCS-25, SCS-26

emergencyBreakSignals

SCS-27, SCS28

SCS-29, SCS-30, SCS-31, SCS-32,

speedLimitControl SCS-33. SCS-34. SCS-35
trafficSignDetection SCS-36, SCS-37, SCS-38, SCS-39
cameraAndProximity SCS-40, SCS-41
brakePedal SCS-42
brakeLight Automatic SCS-43

Table 3. Cross-reference between ASTDs and requirements for speed control system
of 9]

key(keyState, engineOn), aut ‘

> NoKeylnserted)
— insertKey
/{keyState = “Keylnserted”}

removeKey

—
‘ /{keyState = “NoKeylnserted”} -

putlgnitionOn
/{keyState =
“KeylInlgnitionOnPosition”;

\ engineOn = true;

Keylnserted

_— -

putignitionOff ‘

/{keyState = “Keylnserted”; _—
___engineOn=false}) KeylInlgnition
: _OnPosition

Fig. 3. Automaton ASTD key

3.2 Actuators ASTDs

Actuators depend on the sensors to act. Attributes describing the sensors’ state
affect how the actuators can be executed.

Consider ASTD DirectionIndication of Figure 1, which is a flow between ASTD
BlinkControl that indicates if the blink is tip blinking, hazard switch blinking or
non-tip blinking, and ASTD BlinkBulb, that indicates if the light bulb is on or off.
For the sake of simplicity, we show an excerpt of the transitions between states
off and tip from sub-ASTD BlinkControl in Figure 4. State off indicates that
blinking shall stop after completing the previous signal, whereas tip indicates
that tip blinking shall be executed. Those two states have five transitions that
depend on the pitman arm, hazard switch, key state, and time. The transition
from off to tip through event movePitmanArmUD is guarded on the position in
which the pitman arm is moving and the key state. The guard is to conform to
requirements ELS-1, ELS-5, and the statement that direction blinking is only

Modelling an Automotive Software System with TASTD 9

available when the ignition is on. Executing the transition changes the value of
attributes pitmanArmUDP, tip_timer, and NbrCycles. pitmanArmUDP, stores
the value of the last pitman arm position and is later used to define which side
shall blink, which is related to ELS-3. Attribute tip_timer acknowledges how
long the user holds the pitman arm, which is related to ELS-4. NbrCycles is a
counter to determine how many blinking cycles are necessary to stop, related to
ELS-7 and ELS-3.

BlinkControl, aut

[(val == "Upwards" || val == "Downwards") && keyState == "KeylnignitionOnPosition“]

r N
movePitmanArmUD(?val:string) ‘
L /{pitmanArmUDP = val; tip_timer.reset_clock(); NbrCycles = 3; blinking = true}

M off)
PN) / putignitionOn
- [(pitmanArmUD == "Upwards"
|| pitmanArmUD == "Downward5")
&& hazardSwitch == false]
/{pitmanArmUDP = pitmanArmUD;

tip_timer.reset_clock();

. _NbrCycles = 3; blinking = true J
N ‘ putlgnitionOff ‘

[val == "Neutral" & tip_timer.expired(5.0€8)]

(movePitmanArmUD(?val:string) \‘ N
_/{NbrCycles = 0; blinking = false}

Yy

(tip)

(movePitmanArmUD(?val:string) |
[val == "Neutral" && !tip_timer.expired(5.0E8)]

Fig. 4. ASTD BlinkControl, extract with states tip and off

Similarly, Figure 5 is an excerpt from sub-ASTD BlinkBulb. State off indicates
that the light is off due to a dark cycle or no blinking. State on means that the
light is on. These two states alone have six transitions between them. Transition
from off to on through event movePitmanArmUD, is related to ELS-1, ELS-10,
ELS-11, ELS-13. It has a guard on the position to which the pitman arm is mov-
ing, the key state, the hazard switch, and the cycle timer. Attribute cycle_timer
acknowledges for how long the bulb is bright or dark and is used to accomplish
ELS-1, ELS-10. hazardSwitch indicates if the hazard switch is on. Executing this
transition resets cycle_timer and performs function blinkLightsOn, that transi-
tion, satisfying other requirements, turns on the blinking lights.

Moving the pitman arm from Neutral to Upward5, in a state where only the
engine is on, will execute transitions present in ASTDs PitmanArm, BlinkBulb,
and BlinkControl. This results in the activation of the right direction blinking
light.

10 D. de Azevedo Oliveira, M. Frappier

BlinkBulb, aut |

(“movePitmanArmUD(?val:string) [cycle_timer.expired(SE8) && (((val
‘ =="Upward7" || val == "Downward7") && keyState ==
" itionOnPosition") | | ((val == "Upward5" | | val ==
"Downward5") && keyState == "KeylInlgnitionOnPosition")) &&
_!hazardSwitch] / {cycle_timer.reset_clock(); blinkLightsOn J
L) (“Step itch | | ((pitmanArmUD == "Upward5" || pitmanArmUD == N
N "Downward5") && keyState == "KeylnlgnitionOnPosition") || ((pitmanArmUD ==
"Upward7" | | pitmanArmUD == "Downward7") && keyState ==
"KeylnlgnitionOnPosition")) && cycle_timer.expired(5E8)]/ {blinkLightsOn();
_cycle_timer.reset_clock()}

("Step [((NbrCycles > 0 && (pitmanArmUDP == "Upwards"
| | pitmanArmUDP == "Downward5")) && !hazardSwitch
&& keyState == "KeyInlgnitionOnPosition") &&
cycle_timer.expired(5E8)] / {blinkLightsOn();

_cycle_timer.reset_clock()} J

(" putlgnitionOn [cycle_timer.expired(SE8) && ({(pitmanArmUD == "Upwards" || pitmanArmUD == \‘

"Downward5") && hazardSwitch == false) | | ((pitmanArmUD == "Upward7" | | pitmanArmUD ==
| "Downward7") && thazardswitch))] / {blinkLightsOn(); cycle_timer.reset_clock()}

, N
putOnk itch [cycle_timer.expi / ‘
{blinkLightsOn(); cycle_timer.reset_clock()} ‘ l

r ~

Step [cycle_timer.expired(SE8)]/ \ (on)
{blinkLightsOff(); N
{_cycle_timer.reset_clock(); NbrCycles—-;} J

Fig. 5. ASTD BlinkBulb, extract with states on and off

3.3 Modelling time requirements

Some requirements (e.g., ELS-1 and SCS-7) determine specific behaviour for
distinct components during a specific time interval. In TASTD, with each event
Step, the system acknowledges the passage of time. So, choosing a Step interval
value that allows the specification to successfully achieves all requirements is
mandatory.

For this case study, we choose the value of Step as 0.05 seconds. With that
Step value, we accomplish every requirement, even ELS-40, and ELS-8, which
have a different flashing rate than ELS-1. ELS-40 asks for a pulse ratio of 360+60
flashes per minute. In other words, 1/12 of a second bright and 1/12 of a second
dark. For ELS-40, the chosen step value accomplishes the requirement because
we can have 60 flashes less per minute. In the worst-case scenario, with a step
of 1/20 second, there are 300 flashes per minute. ELS-8 demands a fixed pulse
ratio of 1:2, which means 1/3 of a second bright and 2/3 of a second dark,
without a safe range. With our chosen Step, we complete each cycle at 1.05
seconds, which has approximately 57 cycles and slightly misses the requirement.
Additionally, the ratio of 1/3 means a pulse of 0.3333 seconds, and we would miss
the requirement at any chosen step value. We would accomplish the requirement
if ELS-8 had a tolerance as in ELS-1 or ELS-40.

At each occurrence of a Step event, the flow ASTD Actuators executes every
transition labelled with Step whose guard holds, in each automaton under its
scope. In Figure 5, we have a transition Step from state on to state off. This
transition is responsible for finishing a bright cycle and turning off the direction
blinking light. In our simulations, every 0.05 seconds, the system receives a Step
event, to react to the passage of time. The guard cycle_timer.expired(5E8) of the

Modelling an Automotive Software System with TASTD 11

Step transition from state on to off ensures that it is executed only after 0.5
seconds (i.e., every ten steps) in the state on. In our specifications, nanoseconds
(ns) are used as time units, so 5E8 denotes 5x10% ns = 0.5 s.

pushingCCSLever, Delay(1 sec) ‘ aut ‘

\ changingDesiredSpeed, Persistent Delay (1 sec) \
changingSpeed, aut

Step moving10, Persistent Delay (2 sec) ‘ aut
[(sCSLever == "Upwards" | | sCSLever ==
D ngeD

leSpeed, sCSLever, lastDesiredOver120)}

Step
{changeDesiredSpeed(setVehicleSpeed,

" >‘/ waiting) ol Y changing) sCSLever, lastDesiredOver120)}
N J ~__ —

Step N
[(sCSLever == "Upward7" | | sCSLever == %\ _ changing10)
“Downward7")] —
{changeD

sCSLever, lastDesiredOver120)}

moveSCSLever(?val:string)
[(val == "Upwards" | | val == "Upward?7" | | val == "Downward5" | | val == "Downward7")]
{{changeDesi i val, lastDesiredOver120)}

Fig. 6. TASTD pushingCCSLever

Figure 6 shows TASTD pushingCCSLever, an excerpt of the cruise control
ASTD. TASTD pushingCCSLever is related to requirements SCS-7 to SCS-10. In
summary, those requirements mean: if the driver pushes the cruise control lever
to an upward or downward position within the first or second resistance level and
holds it there for two seconds, the desired speed of the cruise control is adjusted
every second (every two seconds for positions at 7°, beyond the pressure point)
following the lever position.

TASTD pushingCCSLever is a delay. It allows for idling at least d time units
before the first event. Once the first event occurs, the TASTD may continue its
execution without delay. It has transition moveSCSLever, related to SCS-1 to
SCS-12. Function changeDesiredSpeed changes the desired speed to match the
input from the cruise control lever, and attribute lastDesiredOver120 is related
to SCS-39. The initial state of pushingCCSLever is state waiting, and it does
nothing but waits one second.

The second state of pushingCCSLever is a Persistent Delay. It allows idling for
at least d time units before executing each event of its sub-ASTD. The persistent
delay of one second means that each Step inside changingDesiredSpeed waits at
least one second to be accepted. If the lever position is at a 7°, then the step
moves the active state to the sub-TASTD movingl0. movingl0 is a persistent
delay of two seconds, related to SCS-8 and SCS-10. If the lever position is at a
5°, then with each Step, the active state remains at state changing, and the delay
continues as one second, which is related to SCS-7 and SCS-9. It is worth noting
that the first constraint of two seconds, from SCS-7 to SCS-10, is satisfied with

12 D. de Azevedo Oliveira, M. Frappier

the delay that waits one second and the first persistent delay on the first event
that waits for another second.

4 Validation and Verification

To validate our model, we use interactive animation of the specification with the
executable code generated by the cASTD compiler for simulation. The compila-
tion is automatic, and no human modification is necessary after production. We
execute the compiled code and compare the results with the provided scenarios
[8]. Our model satisfies the scenarios provided in the case study, with minor
differences in current speed due to insufficient information in the case study on
calculating it when accelerating or decelerating. To overcome this difference, we
added to our model an event that changes the current speed to a chosen value.
We use this function when execution arrives at row “target speed reached” for
each scenario, mainly to continue the simulation with the same speed as provided
in the trace. Figure 7 presents the TASTD responsible for calculating the speed
at each Step. At each Step, currentSpeed is calculated, and it can be adjusted
with updateSpeed if deceleration or acceleration is insufficient.

speedGauge, aut

&& speedMode >= 1]

P .
Step [keyState == "KeyInlgnitionOnPosition"
{currentSpeed = calculateNewSpeed(...)}

N state | updateSpeed(?val:float)
\ / [val > 0] {currentSpeed = val}
N A

L

Step [speedMode <= 0]
{currentSpeed = calculateNewSpeed|(...)}

Fig. 7. TASTD speedGauge

Changes to the model during validation Validation is a method to help
ensure that a specification’s behavior reflects its requirements. During the inter-
active animation, we found divergences between our model and the requirements
for the low beams and direction indication. The provided traces and their in-
terpretation were determinant to solving ambiguities and providing the correct
behaviour.

Modelling an Automotive Software System with TASTD 13

5 Specification Ambiguities and Flaws

In ABZ2020, several authors [1,6,11,13,15,16] found different ambiguities and
flaws in the case study document [9]. We confirm such ambiguities. Although
updated versions were provided after their feedback, the document still has am-
biguities concerning their statements.

For example, ELS-42, which [11] mentioned, has yet to be changed. There is
no indication of what happens with the high beams in the case of sub-voltage,
only that it is not available. What we modelled is in case of sub-voltage, the
high beams are still on, because of ELS-43, which states that even in the case
of sub-voltage, if the light rotary switch is in position Auto and the pitman arm
is pulled (which it is with ELS-42), the high beam is activated.

6 Comparison

In this Section, we compare our solution with the approaches and techniques
previously used to model the ABZ2020 case study.

In [16], ELS is specified with Event-B. Their model is verified by proving
the generated proof obligations for invariants using Rodin, validated with an-
imation and model checking in ProB [12]. During their formalisation, authors
identified and reported several ambiguities in the requirements, which were ad-
dressed in the newer versions of the document. Event-B does not provide native
visualisation or modularisation mechanisms. A model is developed by successive
refinements. Each refinement can add new behavior, but in a somewhat restric-
tive manner, because new events cannot modify existing variables. Thus, when
a variable is introduced, all events that must update it must be introduced at
the same time. Independent system components are typically added one at a
time, and separately proved. Thus, an interleave ASTD is typically modeled as
two (or more) successive refinements. A flow or synchronisation ASTD must be
modeled in the same refinement in Event-B, because the state changes must
be modeled at the same time, or either abstracted and later refined. Invariants
are global; to attach them to a specific state, one must use invariants of the
form ifInStateX = propertyOfStateX. If an event appears in more than one
component, its specification becomes increasingly complex, because its guard
is enriched with new ordering constraints, in a monolithic manner. It makes it
difficult to analyse those components independently. It also makes it hard to
modify a specification, because the refinements are closely coupled, and moving
one aspect from one refinement to another is a complex reengineering task, which
involves reproving several proof obligations. Event-B events have many guards
with many variables for a sizeable system like the ELS and SCS case studies,
which makes it hard to understand the behaviour of an event. For example, in
the final refinement, the event to turn the key to the ignition on position has 16
guards and 17 elementary actions. In TASTD, each component is specified sepa-
rately. Synchronization and flow ensure that constraints imposed on an event in
several components are defined separately and can thus be analysed and (hope-
fully) proved separately. In our specification, the event that ignites the engine

14 D. de Azevedo Oliveira, M. Frappier

is decomposed over nine transitions in ASTDs low beams, direction indication,
and key. This modularisation streamlines the understanding of the behaviour
of that event. On the other hand, one has to go over all these transitions to
get a complete picture of the behavior of the event. To address time require-
ments, Event-B specifications use an event called step, which they use as a time
granularity.

The work in [15] presents an Event-B specification of the SCS. As in [16], the
authors found ambiguities in the SCS requirements. Again, the lack of native
visualisation makes their specification harder to understand, and the modulari-
sation of TASTD over event-B shows a significant advantage of our approach.

In [11], authors present a verified low-level implementation using MISRA C.
MISRA C is a language derived from the automotive industry, which is close
to C. To verify their specification, the authors implement ELS and SCS in C
and perform unit tests. Afterwards, they perform formal verification with the
CBMC model checker [5]. Authors use timers to handle continuous time, and
an artificial time sensor for testing the requirements. However, as stated in [16],
even if this approach has the advantage of directly producing the executable
code, its correctness cannot be guaranteed since model checking on a limited
scope does not ensure the absence of bugs. The authors also provide a list of
ambiguities that they found in [9].

In [6], ELS is specified with Electrum [14]. Electrum extends Alloy [10] with
mutable relations and temporal logic. The authors do not address time require-
ments needing arithmetic operations, because of the limitations of Alloy for
model checking integer values. Their model uses signatures to model the struc-
tural aspect and predicates to capture the system’s behavior. Verification and
validation of their specification use animation through run instructions exercis-
ing simple behaviours of the system and a validator for complex requirements.
With the Alloy Analyzer, the authors can provide a visual animation of the
states during the execution of the system. Alloy being a model-based notation
like Event-B, it suffers from the same weaknesses in terms of modularisation.,
whereas ASTD modularisation, thanks to its algebraic nature, allows a specifier
to isolate a component.

In [1], authors use Abstract State Machine (ASM) to model both ELS and
SCS. They use the ASMETA framework to edit, simulate and animate their
machines. Similar to event-B, their approach is refinement based, where they
start with a simple machine and add details through refinements. ASM also
allows for modularity. Their validation is with interactive animation. Require-
ments verification is performed through model checking using AsmetaSMV [2],
which supports CTL and LTL. A downside of their specification is that they
cannot deal with continuous time. Thus they do not address requirements that
demand time management. Additionally, they mention ambiguities in the case
study document but do not state them.

The work in [13] presents a specification with a subset of the case study in
classical B and Event-B, then compare the two. With classical B, they found ad-
vantages with its modularisation capabilities. With Event-B, the advantage is in

Modelling an Automotive Software System with TASTD 15

the proving environment, which generates more straightforward proof obligations
than classical B. The authors divided their modelling strategy into three phases:
1) an exploratory phase with editing and animation, in which they used classical
B for its rich substitution language. 2) a synthesis phase with a refinement-
based approach with classical B, in which components were integrated, and the
authors added safety invariants verified using model checking. 3) a verification
phase, where they manually translated the classical B specification to Event-B
and then proved and model checked. They model time as a discrete integer vari-
able representing elapsed time in milliseconds. The authors also present a new
plugin for ProB, called VisB, which provides visualisation for all of ProB’s sup-
ported state-based formalisms. VisB uses scalable vector graphics (SVG) files to
represent the state of actuators.

7 Conclusions

To summarize, we have presented a TASTD model for the adaptive exterior
light and speed control system case study of ABZ2020. Our model considers
all the requirements. We validate our model through interactive animation and
comparison with the validation scenarios proposed in the case study.

The main advantages of modelling with TASTD in comparison with other
methods presented in ABZ2020 are the following.

— The algebraic approach allows for the decomposition of a specification into
very small components which are easier to analyse and understand. In par-
ticular, the behavior of an event that affects several components can be
separately specified in each component. The synchronisation and flow op-
erators can be used to indicate how these components interact over these
events (i.e., hard or soft synchronisation).

— Communication by shared attributes permits to simplify automata of a spec-
ification and reduce the number of automaton states.

— The graphical nature of TASTD allows for an easier understanding of a
specification. Automata and process algebra operators makes it easier to
understand the ordering relationship between events.

— TASTD provides a simple, modular approach to deal with timing require-
ments.

— TASTD, with its compiler cASTD, can generate C++ code that can be
deployed into an embedded system. It is also capable of generating code for
simulation, in order to check scenarios.

The development of models for the cruise control and exterior light sys-
tems, as well as their validation and documentation, required approximately
two months. The initial attempt was made in August 2022 and lasted for a total
of 40 hours. The first modelling approach utilized the Event-B implementation
as a baseline, but it was found to be inadequate for ASTD. As a result, the
modelling approach was modified and the project was restarted. Subsequently,
the first version of the exterior light system was completed in the next 40 hours.

16 D. de Azevedo Oliveira, M. Frappier

The validation process required an additional 40 hours, during which the model
was updated to ensure that the low beams and direction indicator lights were
appropriate. Following completion of the exterior light system, the modelling
of the cruise control system was undertaken, which involved 60 hours of mod-
elling and validation. Documentation was carried out in November, followed by
another week in January. It should be noted that the entire modelling and vali-
dation process, as well as the documentation in November, were undertaken by
a single individual who was concurrently working on other projects.

TASTD currently lacks supports for verification. As future work, we intend
to extend TASTD with invariants that can be attached to automaton states
and ASTD themselves, thus allowing to decompose the verification of properties
into small parts. Attributes could be written using the mathematical language
of classical B or Event-B and actions could be written using the rich generalized
substitution language of classical B. Proof obligations will be generated as theo-
rems of Event-B contexts and proved using Rodin, which provides a nice proving
environment. A translation from ASTD to B has been proposed in [7,17], but it
produces monolithic, complex POs. We hope that this new approach will help
to simplify proof obligations.

This case study is, until now, the most extensive specification defined with
TASTD in the number of attributes and ASTDs, with 150 ASTDs, 50 attributes,
and generated executable code of 11MB. It demonstrated that the editor was not
ready for a specification with many ASTDs, and the compiler was unprepared
for a specification with many attributes. Thanks to this model, both the editor
and the compiler were improved to deal with large specifications.

The editor must still be extended to deal with large specifications and n-ary
operators. For instance, Figure 1 was manually prepared for this paper to remove
superfluous intermediate binary ASTDs that make the specification harder to
read.

Additionally, during model development, we considered creating a new ASTD
type to avoid the double call to ASTD Sensors in our solution. With this type,
we want to describe the idea of a control ASTD A; (e.g., ASTD Sensors of our
case study) and a controlled ASTD As (e.g., ASTD Actuators of our case study),
which, we believe, is a recurring pattern in control specifications. ASTD A; and
As would be “partly” synchronised through a set A of events, in the following
sense. An event e of A would be executed iff A; can execute it. Thus, A, is
executed iff A; can execute e and if A can execute e. if A; can execute e, then
it does, independently of the capacity of As to execute e.

Another modification to ASTD that we plan to introduce is to allow for the
definition an order of execution of the operands of binary operators synchroniza-
tion, flow and choice. For interleaving and choice, it would allow the specifier to
remove nondeterminism and choose which operand will be tested first for exe-
cution. For synchronisation and flow, it would allow to determine the order in
which the operands will be executed; thus, the second ASTD to execute could
reliably use the values of the attributes updated by the first ASTD executed.

Modelling an Automotive Software System with TASTD 17

References

10.
11.

12.

13.

14.

15.

16.

Arcaini, P., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: Mod-
elling an automotive software-intensive system with adaptive features using AS-
META. In: International Conference on Rigorous State-Based Methods. pp. 302—
317. Springer (2020)

. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level

ASM models to low-level NuSMV specifications. In: International Conference on
Abstract State Machines, Alloy, B and Z. pp. 61-74. Springer (2010)

de Azevedo Oliveira, D., Frappier, M.: Case Study ABZ 2020 TASTD Model.
https://github.com/Diego0liveiraUDES/casestudyABZ2020-tastdmodel
(2023), [Online; accessed 06-January-2023]

de Azevedo Oliveira, D., Frappier, M.: Technical Report 27 - Extending ASTD
with real-time. https://github.com/Diego0liveiraUDES/astd-tech-report-27
(2023), [Online; accessed 28-January-2023]

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 168-176. Springer (2004)

Cunha, A., Macedo, N., Liu, C.: Validating multiple variants of an automotive
light system with electrum. In: International Conference on Rigorous State-Based
Methods. pp. 318-334. Springer (2020)

Fayolle, T.: Combinaison de méthodes formelles pour la spécification de systéemes
industriels. Theses, Université Paris-Est ; Université de Sherbrooke (Québec,
Canada) (Jun 2017), https://theses.hal.science/tel-01743832

Houdek, F., Raschke, A.: Validation sequences for ABZ case study “adaptive ex-
terior light and speed control system” v1.8 (2019)

Houdek, F., Raschke, A.: Adaptive exterior light and speed control system. In:
International Conference on Rigorous State-Based Methods. pp. 281-301. Springer
(2020)

Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press (2012)
Krings, S., Korner, P., Dunkelau, J., Rutenkolk, C.: A Verified Low-Level Imple-
mentation of the Adaptive Exterior Light and Speed Control System. In: Interna-
tional Conference on Rigorous State-Based Methods. pp. 382-397. Springer (2020)
Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer 10(2), 185-203
(2008)

Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system
in classical b and event-b. In: International Conference on Rigorous State-Based
Methods. pp. 335-350. Springer (2020)

Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. pp. 373-383 (2016)

Mammar, A., Frappier, M.: Modeling of a Speed Control System Using Event-
B. In: International Conference on Rigorous State-Based Methods. pp. 367-381.
Springer (2020)

Mammar, A., Frappier, M., Laleau, R.: An Event-B model of an automotive adap-
tive exterior light system. In: International Conference on Rigorous State-Based
Methods. pp. 351-366. Springer (2020)

https://github.com/DiegoOliveiraUDES/casestudyABZ2020-tastdmodel
https://github.com/DiegoOliveiraUDES/astd-tech-report-27
https://theses.hal.science/tel-01743832

18

17.

18.

D. de Azevedo Oliveira, M. Frappier

Milhau, J., Frappier, M., Gervais, F., Laleau, R.: Systematic translation rules from
astd to event-b. In: International Conference on Integrated Formal Methods. pp.
245-259. Springer (2010)

Nganyewou Tidjon, L., Frappier, M., Leuschel, M., Mammar, A.: Extended Alge-
braic State-Transition Diagrams. In: 2018 23rd International Conference on Engi-
neering of Complex Computer Systems (ICECCS). pp. 146-155. Melbourne, Aus-
tralia (2018)

	Modelling an Automotive Software System with TASTD

