
An Overview of Formal Specification Languages and

their Adequacy for Formalizing the Definition of

Function Points

Project FP-Formal
Technical report 1

version 1.1
February 18, 1999

Marc Frappier

Département de mathématiques et d’informatique
Faculté des sciences

Université de Sherbrooke

UNIVERSITÉ DE

SHERBROOKE

Abstract

Function point is the most widely used functional size measure in the software
industry. It serves several purposes like software cost estimation, productivity man-
agement, quality management, benchmarking, outsourcing management, and several
others. The goal of project FP-Formal, a research project funded by Bell Canada,
is to formalize the function point measure in order to automate its calculation and to
reduce measurement variance and costs. In this report, we analyse a set of formal spec-
ification languages and evaluate their adequacy for specifying industrial information
systems and for formalizing the function point measure.

i

Résumé

La mesure de taille fonctionnelle la plus répandue de l’industrie du logiciel est le
point de fonction. On l’utilise pour diverses activités de gestion telles l’estimation du
coût d’un projet, la gestion de la productivité, de la qualité, de l’impartition et la
définition de bancs d’essais. Le projet FP-Formal, financé par Bell Canada, a pour
objectif de formaliser la mesure des points de fonction. Cette formalisation permettra
d’automatiser le comptage des points de fonction, ce qui devrait réduire les coûts et
les erreurs de comptage. Dans ce rapport, nous analysons un ensemble de langages de
spécification formels et nous évaluons leur adéquation pour la spécification de systèmes
d’information et la formalisation des points de fonction.

ii

Contents

1 Introduction 1

2 Overview of Function Points 2
2.1 Formalization of Function Points . 2

3 A Classification of Formal Specification Languages 3

4 Detailed Evaluation of Languages Classes 5
4.1 State Machine Languages . 5

4.1.1 Language Characteristics . 5
4.1.2 Adequacy for the Formalization of Function Points 7
4.1.3 Adequacy for Specifying Information Systems 7

4.2 Trace-Based Languages . 8
4.2.1 Language Characteristics . 8
4.2.2 Adequacy for the Formalization of Function Points 9
4.2.3 Adequacy for Specifying Information Systems 9

4.3 Algebraic Languages . 10
4.3.1 Language Characteristics . 10
4.3.2 Adequacy for the Formalization of Function Points 10
4.3.3 Adequacy for Specifying Information Systems 10

4.4 Process Algebra Languages . 11
4.4.1 Language Characteristics . 11
4.4.2 Adequacy for the Formalization of Function Points 11
4.4.3 Adequacy for Specifying Information Systems 11

4.5 Modal Logic . 12
4.5.1 Language Characteristics . 12
4.5.2 Adequacy for the Formalization of Function Points 12
4.5.3 Adequacy for Specifying Information Systems 12

4.6 Object-Oriented Notations . 12
4.6.1 Language Characteristics . 12
4.6.2 Adequacy for the Formalization of Function Points 13
4.6.3 Adequacy for Specifying Information Systems 14

4.7 Summary of Evaluation . 14

5 Conclusion 15

References 16

iii

1 Introduction

The use of size measures for functional user requirements has rapidly spread in the software
industry over the last two decades. Function point is probably the best known of these
measures [3, 36]. Function points are used for critical aspects of software management such
as estimating software effort, calculating productivity and defect density, and managing
outsourcing contracts [2, 25, 46, 53].

Function point has several weaknesses as a method for evaluating functional size. It lacks
a formal model: the counting rules are given in plain natural language and are subject to
interpretation by experts. This problem introduces some variances on function point count
depending on the rater. Studies noted a difference varying from 11 % to 30 % [25, 41, 44, 45]1,
which is significant if function points are used for managing outsourcing contracts. Moreover,
function point calculation is mostly a manual process which is quite expensive. Typically,
an expert can count 57 function points per hour. The Bell Canada software portfolio is
estimated at 325 000 function points, which means that it would take around three person-
years to precisely measure this portfolio.

Recognizing the importance of these issues, the objective of the FP-Formal project is to
formalize the IFPUG definition of the function point measure. A formal foundation for func-
tion point should increase its objectivity and reduce measurement variance between counters.
It should also provide a basis for automating its calculation from a formal requirements spec-
ification, thereby reducing measurement cost and variance.

A first step to achieve this objective is to select a formal requirements specification
language. In this report, we review a set of formal specifications languages and evaluate
their adequacy for specifying industrial information systems and formalizing the function
point measure. We warn the reader that such an evaluation is bound to be partial, because
the array of languages to study is too vast to provide a detailed analysis. Nevertheless, this
evaluation is useful and necessary, because it allows us to make a more rigorous selection.

We characterize information systems as follows. They typically use several large data
structures which are modified and queried by transactions submitted by several users in
concurrency. The difficulty of information systems mainly resides in complex relationships
between data structures, in complex calculation involving several data structures, in pro-
cessing large volume of data, and in preserving the integrity of the data structures through
concurrent updates by several users. Information systems typically have little hard real-time
constraints or inter-process communication.

In Sect. 2, we present a brief overview of the function point measure and discuss the
issues related to its formalization. Sect. 3 provides a classification of formal specifications
languages, offering the reader an overview of the domain. In Sect. 4, we evaluate each
class of languages, describing strengths and weaknesses for function point formalization and
industrial information system specification. This evaluation is summarized in Sect 4.7. We
conclude with some remarks in Sect 5.

1These figures hold when the count boundary is well-defined. Larger variations are observed when bound-
aries are not clearly delineated

1

2 Overview of Function Points

Function points were proposed by Albrecht in 1983 [3]. Its user community has constantly
grown since then, and it is now organized into a user group (IFPUG - International Function
Point User Group) which proposes international standards for measurement and analysis [36].
Another version of function points, Mark II Function Point Analysis, has been proposed by
Symons [74], but it is mostly used in the United Kingdom. In this report, we focus on the
IFPUG definition of function points.

The following equation describes how function points, denoted by FP , are counted.

FP = UFP ∗ V AF

Variable UFP denotes the number of unadjusted function points and variable V AF denotes
the value adjustment factor. Variable UFP is determined using two main categories of
components: data components (e.g., files, database tables, etc) and function components
(e.g., updates, inquiries, reports). Data components are further divided in two categories:
external interface files (EIF) and internal logical files (ILF). Function components are divided
into three categories: external inputs (EI), external outputs (EO), and external inquiries
(EQ). To compute UFP , each component c is assigned a weight wc according to its category
(EIF, ILF, EI, EO, or EQ) and other parameters: for data components, these parameters are
the number of data element types (DET) and the number of record element types (RET);
for function components, they are the number of DET and the number of EIF and ILF
referenced. The UFP is simply the sum of the component weights.

UFP =
∑

c

wc

The Counting Practice Manual of IFPUG [36] provides rules for identifying, categorizing
and weighing components. There are 14 rules for data components and 41 rules for function
components. It is these rules that we want to formalize.

Variable V AF (Value Adjustment Factor) is determined by evaluating 14 factors on a
scale of 0 to 5. The following equation describes the calculation of V AF from each factor fi

V AF = 0.65 + 0.01 ∗
14∑

i=1

fi

There also are rules for evaluating each factor, but they are not easily formalizable. Moreover,
the effort required to evaluate V AF only represents a small percentage of the total effort for
function point count. Hence, we will not invest effort for their formalization.

2.1 Formalization of Function Points

We define a formalized rule as a mathematical formula with a precise semantics. The prob-
lem of implementing a formal rule with a computer algorithm is a separate issue. Some
formalization are easy to implement efficiently whereas others are more difficult to imple-
ment or are too algorithmically complex to be used effectively for automatic function point

2

count. We will not restrict ourselves to the former, as our primary goal is to provide a precise
and clear definition of counting rules. If some rules are too difficult to mechanize, then we
may either simplify them or require human expertise for their evaluation.

It is clear that some rules of the Counting Practice Manual cannot be formalized. In [63],
the authors argue that five steps require human judgement. We hope that we can reduce
this number using a formal specification language, because the formal syntax and semantics
allow more precision in the definition of rules. For instance, the issue of uniqueness in data
components and function components seems to be amenable to formalization if we select a
model-based specification language like Z [73].

A formal rule should only depend on the requirements specification document. We assume
no input from a human expert that would clarify part of the specification, or supplement
the specification with annotations to cater for specification language limitations.

3 A Classification of Formal Specification Languages

Research in formal specification languages started in the early sixties. Numerous languages
resulted from this research endeavor. Our goal here is not to recapitulate all of them, but
more to focus on the ones which retained the attention of the research community over the
years, and had successful trials in some industrial applications.

We distinguish the following classes of specification languages.

State Machine Languages A state machine specification has a set of states, a set of
inputs, a set of outputs, a transition function, an output function and an initial state.
A machine starts in its initial state. When an input is received from the environment,
the transition function determines the next state, and the output function determines
the output returned to the environment. Examples of state-based languages are Moore
machines [61], Mealy Machines [55], statecharts [30], Z [73], VDM [42], B [1], OCL [67],
Cleanroom [57, 59], SDL [22], ROOM [72].

Trace Languages A specification is defined as a set of traces (also called input-output
sequences). A trace describes a sequence of interactions between the system and its
environment. An interaction is either the reception of an input, the production of an
output, or both (synchronization on a value). Traces abstract from state transition;
they only focus on observable interactions. Examples of trace-based languages are
Cleanroom [57, 59], the trace-assertion method [77], the inductive method [58] and the
entity black-box notation [24].

Algebraic Languages A specification is given as a set of functions, whose signatures are
defined using sorts, and a set of conditional equations. A subset of the functions, the
generators, defines the normal forms, i.e., the set of values (also called terms) defining
the state space of the specification. Examples of algebraic languages are CLEAR [12],
Larch [28], OBJ [27], ACT ONE [21], CASL [13] and PLUSS [26].

Process Algebra Languages A specification is a process which may communicate with
its environment through gates. The behavior of a process is given by an expression

3

defining an ordering of actions (also called events, interactions) occurring at gates.
Expressions are constructed using operators like sequential composition, choice, parallel
composition with synchronization, interleave, and nondeterministic choice. Process
algebras were designed for specifying distributed, concurrent systems. Examples of
process algebra languages are CCS [60], CSP [33], LOTOS [7] and ACP [6].

Modal Logics Modal logics denotes a class of logics using modalities describing the modes
of truth of formulas. Temporal logic is a subclass of modal logics which deals with the
evolution of truth values of a formula over time. Example of modalities are always,
which says that a formula is always true, or eventually, which says that a formula will
eventually become true. Modal logics are useful for specifying properties of systems,
especially distributed, concurrent, reactive systems. They may be used in conjunction
with state machine languages or process algebra languages to defines properties about
a specification and prove them. Examples of modal logics are Manna and Pnueli’s
temporal logic of reactive and concurrent systems [51], CTL [15], and TLA [48].

Object-Oriented Notations These notations emerged from object-oriented programming
languages like Simula and Smalltalk. The word “object” bears so many different mean-
ings in the software literature that it is difficult to propose a widely agreed upon defi-
nition. In short, an object has a state and an interface which describes the operations
(methods) that can modify its state. The attributes of an object, which describes its
state, and the implementation of operations are encapsulated, so that a user of an
object only sees what is exported (published) in the interface. A class is a collection
of objects. Objects of a class have the same state structure and the same operations.
Sharing of properties between classes may be described using inheritance. UML (Uni-
fied Modeling Language) [65] is the result of a joint effort from several organisations
to propose a standard notation for object-oriented models. It is inspired from work by
several authors like Booch [8], Jacobson [39], Rumbaugh [70] and others. A formal def-
inition of the UML syntax and semantics [66] is defined using OCL (Object Constraint
Language) [67].

Wide-Spectrum Notations Most specification notations are typically suitable for a spe-
cific class of problems (e.g., sequential systems, distributed systems, concurrent sys-
tems, real-time systems) or for a specific phase of the software life cycle (specification,
design, implementation). Consequently, software engineers may have to use several
notations to develop a set of related systems. It is not always easy to couple differ-
ent notations, because of paradigm or semantic clashes. To circumvent these prob-
lems, wide-spectrum notations covering several specification paradigms and unified
under a common semantic framework were developed. The most notable examples are
RAISE [64], COLD-1 [14] and SPECTRUM [10].

As an example, consider the RAISE notation. It unifies features of several specification
languages (VDM, CSP and ACT-ONE). Another example is COLD-1, which covers all
phases of the software life cycle, and includes specification paradigm like state machine
specification, algebraic specification, inductive definitions, algorithmic definitions in
functional as well as imperative style. Moreover, it offers facilities for the modular

4

structuring of specifications. COLD stands for “Common Object-oriented Language
for Design”. It is used within Philips in an important project in consumer electronics,
and in the software and information technology center of Philips Research Laboratories.

In the next section, we provide a detailed evaluation of each language class. Because
wide-spectrum notations consist of a mixture of several languages from several classes, they
are not specifically covered in the next section.

4 Detailed Evaluation of Languages Classes

An evaluation should analyze and compare the following:

• specification language characteristics;

• measures of specification language “experiments” (actual language uses for industrial-
size systems).

Unfortunately, very few reports in the literature describe the industrial usage of any formal
specification language for information systems. Therefore, the emphasis of our evaluation
is on language characteristics. For space considerations, we restrict our analysis to salient
features of each class.

4.1 State Machine Languages

4.1.1 Language Characteristics

In basic state machine notations (e.g., Moore machines [61] or Mealy Machines [55]), the
input set, the output set and the transition function are defined by enumeration (i.e., set
extension). In more elaborate notations, these sets are defined by set comprehension using
first-order logic, set theory and other basic data types like relations and sequences; the
transitions are defined using operations which map an input and the current state to an
output and a next state. These notations are often called model-based notations.

For the sake of simplicity, let us use the general, abstract model of Cleanroom [57, 59] to
represent state machines. Most of the state-machine notations (or a large useful portion of
them) can be mapped to this general model. The description of this mapping involves too
many details, so it is far beyond the scope of this document. We will use this general model
throughout the rest of this document to compare languages from different classes.

In Cleanroom, a state machine is a tuple (X, Y, S, R, s0) where X denotes the input set,
Y denotes the output set, S denotes the state space, s0 denotes the initial state and R denote
the transition relation. Relation R satisfies the following constraint:

R ⊆ (X × S) × (Y × S) .

A transition is triggered by the reception of an input from the environment. Given an
input x and a current state s, the transition relation R provides the set of possible next
states and outputs delivered by the system when the processing of x is completed. Note that

5

we use a transition relation instead of a transition function to cater for non-deterministic
specifications. We may denote the set of next states by (x, s).R :

(x, s).R
∆
= {(y, s′) ∈ Y × S | ((x, s), (y, s′)) ∈ R} .

The essence of languages like B, Z, VDM, and OCL is to provide syntactic constructs to
define X, Y , S, R and s0.

Usually, R is defined as a union of relations Ri:

R
∆
= R1 ∪ . . . ∪ Rm .

These relations Ri are often called operations. A simple analogy with information systems
is to consider that operations Ri are specifications of modules interacting with the users.

The state space S is typically defined as the Cartesian product of sets:

S
∆
= S1 × . . . × Sn .

We will refer to sets Si as dimensions of the state space. Pursuing our analogy with infor-
mation systems, the reader may consider that a dimension Si is an abstract specification of
a table in a relational database.

Sets X and Y are often implicitly defined using the signatures of operations Ri. For the
sake of simplicity, we may define the signature of an operation Ri as an expression of the
form

(Xi × (Sj1 × . . . × Sjp)) × (Yi × (Sk1 × . . . × Skq)) .

This expression simply states that operation Ri takes an input from set Xi and delivers an
output from set Yi. The operation reads state information from dimensions Sj1 to Sjp of the
state space S and modifies dimensions Sk1 to Skq ; the other dimensions are preserved by the
execution of the operation.

In turn, sets Xi, Yi, and Si are typically defined using Cartesian products of sets. We
call these sets attributes.

Xi
∆
= A1 × . . . × Ami

Yi
∆
= A1 × . . . × Ani

Si
∆
= A1 × . . . × Api

In our information systems analogy, attributes of input sets or output sets correspond to
fields in a form or a report; attributes of a state space dimension correspond to columns in
a table.

Sets X and Y are implicitly defined as the union of input sets and output sets, respec-
tively, appearing in operation signatures.

X
∆
=

m⋃

i=1

Xi Y
∆
=

n⋃

i=1

Yi

6

4.1.2 Adequacy for the Formalization of Function Points

There is a natural mapping between state machine languages and function points. An
operation Ri corresponds to an elementary process. Consequently, the boundary of a function
point count could be defined as a set of operations. Given that we consider each Ri as an
elementary process, each Ri is a function component.

Operation signatures may be used to classify function components. An external input
is an operation whose signature contains a non-empty set of modified dimensions Skj

. An
external output is an operation whose signature contains a non trivial output set Yi. Dually,
an external inquiry is an operation whose signature contains a trivial output set Yi. The
meaning of “trivial” could be defined by syntactic heuristics on Ri, depending on the specific
language used for the specification. Informally, a trivial output is derived by performing a
straightforward copy from state dimensions Sj1, . . . , Sjp to Yi.

A data component is a dimension Si of the state space. It is included in the count if
there exists an operation signature referring to it. It is classified as an external interface
file if there does not exist an operation signature where it appears as a modified dimension;
otherwise, it is classified as an internal logical file.

It seems reasonable to conjecture at this point that component weights could also be
formalized using operation signatures and dimension definitions. DET are required to de-
termine component weights. Attributes Ai appearing in the definition of input sets, output
sets and dimensions correspond to DET.

Function components are weighed according to the number of data components appearing
in the signature and the number of DET appearing in the definition of an input set or in a
modified dimension.

From this preliminary analysis, it is also clear that some parts of the IFPUG function
point counting manual can not be formalized using state machine languages, because they
are subjective (i.e., they depend on human judgement). For instance, the identification of
data components, record types and data element types according to the user point of view
is subjective.

4.1.3 Adequacy for Specifying Information Systems

Basic state languages like Mealy and Moore’s finite state machines are not appropriate for
writing realistic, complete information system specifications. They require an enumeration
of the state space and of state transitions which quickly becomes unmanageable, even for
the simplest information system.

State machine languages using set theory and set comprehension are more powerful. They
have the following strengths for specifying information systems.

1. The state of an information system is typically large and composed of several data
structures. Languages based on set theory can easily model these complex data struc-
tures.

2. Operation preconditions in information systems are typically large and involve several
data structures. Preconditions can be stated in a straightforward manner.

7

3. The next state in a transition can be described by computing modification to the
current state.

4. Invariant properties (safety properties) of the state can be specified in a straightforward
manner.

5. They are closer in style to programming languages.

State machine languages have the following weaknesses.

1. The specification of complex ordering constraints on transactions (i.e., similar to tele-
phony systems or telecommunication protocols) is difficult, because the history of trans-
actions is encrypted into state dimensions.

2. The dynamic of the state space is difficult to grasp. To understand the behavior of an
operation, one must understand how the state dimensions used by the operation evolve;
therefore, one must also look at every operation that modifies the state dimensions.

4.2 Trace-Based Languages

4.2.1 Language Characteristics

We may describe trace-based languages using the concepts introduced for state machine
languages. Let A+ denote the set of non empty finite sequences constructed using elements
of set A. A trace specification is a triple (X, Y, R) such that R is a subset of X+ × Y +. The
signature of an operation Opi is given by an expression of the form

(Xi × Yi)

It is easy to understand what a trace specification represents by looking at a state machine
specification. Let s� R �s′ be an abbreviation for (s, s′) ∈ R. We may compute the trace
specification T = (X, Y, R) of a state machine M = (X, Y, S, R′, s0) by stating that for any
sequence of transitions

(x1, s0)� R′ �(y1, s1)
(x2, s1)� R′ �(y2, s2)
. . .
(xn, sn−1)� R′ �(yn, sn)

in M , we have
x1.x2.xn� R �y1.y2.yn

in T . In other words, if the state machine M accepts, starting from the initial state s0,
a sequence s

∆
= x1.x2.xn of inputs, and produces the sequence s′ ∆

= y1.y2.yn of
outputs, then (s, s′) ∈ R is a trace in specification T .

Trace specifications abstract from state transitions by describing only the history of
inputs and outputs. Trace specifications are often called black-box specifications, because
they completely hide the internal description of the state machine.

8

4.2.2 Adequacy for the Formalization of Function Points

Trace specifications are less adequate than state machine specifications for the formalization
of function points. Because they abstract from states, it is not possible to identify data
components. Consequently, the calculation of weights for function components cannot be
fully formalized, because data components are required.

As in state machine specifications, we may define elementary processes as operations and
the boundary as a set of operations. We may classify function components by looking at
their effect on the traces. When the condition 1 below is satisfied, operation OPi is either
an external inquiry or an external output. Let x ∈ Xi be an input on which operation Opi

is called, and let y ∈ Yi be the result of this operation call.

∀x, y, s1, s2, s
′
1, s

′
2 : x ∈ Xi ∧ y ∈ Yi :

s1.x.s2� R �s′1.y.s′2
⇒
s1.s2� R �s′1.s

′
2

(1)

In other words, the execution of operation Opi does not affect the behavior of subsequent
operations in any trace. If this condition is not satisfied, then the operation is an external
input. The DET of a function component are represented by the attributes of the operation
signature.

We do not see at this point how we could distinguish between external outputs and ex-
ternal inquiries. We may have to recourse to syntactic heuristics, depending on the language
used.

Data components could also be defined using syntactic heuristics. For instance, entities
from the entity black box notation [24] could represent data components; DET would be
calculated by taking the list of all attributes of all operations appearing in an entity structure
diagram.

4.2.3 Adequacy for Specifying Information Systems

Trace specifications have been used for over ten years by several Cleanroom practitioners in
organizations like IBM, the US Federal Government, US military contractors and Ericsson,
a telecommunications manufacturer. Typically, trace specifications are written in a semi-
formal notation.

This large user community represents evidence, as good as state machine experiments,
that trace specification are useful for specifying systems. However, as for state machine
languages, we lack precise data specific to information systems.

Trace specifications have the following strengths for specifying information systems.

1. The abstraction from states forces the specifier to focus on specification issues rather
than design issues, providing a clearer understanding of the expected system behavior.

2. If an appropriate language is used, trace specifications may be shorter in length than
state machine specifications [24].

In counterpart, we have the following weaknesses.

9

1. Cleanroom practitioners report that trace specifications can be quite lengthy, with 80%
of the specification effort dedicated to handling invalid input sequences and errors. As
we stated in the previous paragraph, small scale experiments show that an appropriate
notation can alleviate that.

2. Complex calculations or validations are sometimes cumbersome to describe with traces.
In these cases, one must mimic the state machine specification style by defining func-
tions that compute state-like information from the traces.

4.3 Algebraic Languages

4.3.1 Language Characteristics

An algebraic specification is a triple (Sorts, Functions, Axioms). Functions are defined over
the sorts using axioms (equational or conditional) in first-order logic. The system state is
represented by terms which are elements of sorts. Algebraic specifications are as abstract as
trace specifications, because the state space needs not to be defined in terms of elementary
theory like sets and relations. In practice however, most large size specifications make
pervasive uses of elementary theories to represent the state space.

For the sake of simplicity, the reader may consider that functions correspond to operations
in trace specifications, and that their signatures may be defined in a similar manner.

4.3.2 Adequacy for the Formalization of Function Points

Algebraic specifications are less adequate than trace specifications for formalizing function
point. Operations are not always elementary processes. Some of them may be auxiliary
operations used in the definition of operations required by the user. We do not see any
systematic way of distinguishing them.

There is a similar problem with data components. Sorts may represent data components
and DET, without any systematic way of distinguishing between them.

4.3.3 Adequacy for Specifying Information Systems

We do not have any data on the industrial usage of algebraic specifications. The basic aca-
demic examples of specifications that we have analyzed leads us to the following conclusions
regarding their strengths and weaknesses.

1. Algebraic specifications are very good for defining abstract specifications of basic data
structures. In fact, model-based specifications implicitly use an algebraic-like defini-
tions of sets, relations and other basic data types.

2. Algebraic specifications are executables through term rewriting.

On the other hand, there are the following weaknesses.

1. Axioms for moderately complex specifications are not easy to write.

10

2. It is not easy to determine if the set of axioms is complete (sufficient) for the problem
at hand.

3. Specifications are not easy to validate.

In his book on Larch [28], Guttag, one of the pioneers in algebraic specifications, advocates
the use of algebraic specifications in conjunction with model-based specifications. In this
approach, data types are defined using algebraic specifications; state space definitions and
operations use these data types.

4.4 Process Algebra Languages

4.4.1 Language Characteristics

Process algebras share several similarities with trace specifications and algebraic specifica-
tions. They may be used at the same level of abstraction, that is, by describing observable
events between the system and its environment.

In contrary to trace specifications, process algebraic specifications do not use predicates
on sequences to describe ordering constraints; rather, the specification is a term of an alge-
bra. Operators of a process algebra are specifically designed to express ordering constraints
between events and parallel compositions of processes with synchronisation. Events are
described using algebraic specifications.

Another distinction is that process algebras do not distinguish between input events
and output events. In other words, events are not described as data submitted by the
environment to the system, or data produced by the system for the environment. An event
is simply a synchronization between the system and the environment. To classify events,
one may use heuristics based on event decoration symbols like “?” and “!” (in CSP and
LOTOS) to identify inputs and outputs, respectively. However, these heuristics may fail in
several occasions.

4.4.2 Adequacy for the Formalization of Function Points

Because process algebras do not distinguish between inputs and outputs, it seems difficult to
identify function components. There is a similar problem with data components. In process
algebras, event parameters may either be input parameters, output parameters or state
information. Hence, it is difficult to identify data components and weight them. Because of
these difficulties, process algebra are not adequate for formalizing function points.

4.4.3 Adequacy for Specifying Information Systems

Process algebras were designed for specifying distributed systems and reactive systems, where
the complexity resides in complex ordering constraints. It is feasible to specify information
systems with them, but it is less convenient than model-based languages.

Strengths

1. Suitable for specifying ordering on events;

11

2. Suitable for specifying synchronization between processes.

Weaknesses

1. Cumbersome to specify data-intensive systems.

4.5 Modal Logic

4.5.1 Language Characteristics

As in process algebras, modal logics do not make a distinction between input events, out-
put events, and state modification. Typically, modal logics are used in conjunction with
other formalisms, like state machines or process algebras, to express safety properties or
liveness properties. One may then use model checking or theorem proving to ensure that a
specification satisfies these properties.

4.5.2 Adequacy for the Formalization of Function Points

If they are used alone, modal logics suffer the same limitations as process algebras. If they
are used in conjunction with other formalism, then function points can be counted from the
other formalism. Hence, there is no benefit to use modal logic to formalize function points.

4.5.3 Adequacy for Specifying Information Systems

Strengths

1. Suitable for specifying safety properties and liveness properties.

Weaknesses

1. Cumbersome to specify data-intensive systems;

2. Difficult to express complex ordering constraints.

4.6 Object-Oriented Notations

4.6.1 Language Characteristics

Among all the notations presented in this document, object-oriented notations are the most
widely used in industry. UML becoming a de facto industry standard, and having a formal
syntax and semantics, we will restrict our analysis to this language.

UML is a quite comprehensive and complex notation. It includes several types of dia-
grams for which a formal semantics has been defined. These diagrams are typically supple-
mented with formal texts (e.g., in OCL) or, most likely in practice, plain natural languages
texts.

12

use case diagram : it defines the behavior of an entity, like a system or a subsystem,
without specifying its internal structure.

In industry, specifiers typically use plain English to describe use cases. The UML
semantics [66] suggests that more formal notations may be used to described a use
case, like operations and state machines.

class diagram : it defines attributes, operations, methods, and relationships of the class
objects. There are several possible relationships between objects: inheritance, aggre-
gation, composition, association, dependency, etc.

behavior diagrams

statechart diagram : it shows the sequences of states that an object goes through
during its life in response to inputs (method calls), together with its outputs and
actions.

activity diagram : it is a kind of flowchart. Nodes are actions; arrows represent
sequential execution of actions.

interaction diagrams

sequence diagram : it shows the sequence of messages exchanged between the
environment and the objects composing the system. A message is represented
by an horizontal arrow. Messages are temporally ordered by listing them from
top to bottom.

collaboration diagram : like the sequence diagram, it shows the sequence of
messages exchanged between the environment and the system; however, a
number is assigned to each message to describe the ordering between mes-
sages.

4.6.2 Adequacy for the Formalization of Function Points

There is a natural mapping between function points and object-oriented notations, but it
is difficult to formalize. Data components corresponds to classes of a class diagram. Note
that not every class is a data components. For instance, control classes, that are responsible
for managing the execution sequence, or interface classes, that are responsible for managing
interaction with the environment, are not data components; they do not hold information
relevant for the user; they represent design decisions rather than requirements information.

Relationships between classes like aggregation and generalization could be used to define
ILF, EIF and RET. In [79], Whitmire suggests that leafs in a generalization hierarchy are
ILF or EIF, and that aggregates are RET. Other view points could also be considered, like
considering each aggregate or specialization as a RET.

Function components can be identified from sequence diagrams or collaboration diagrams.
They correspond to messages exchanged between the environment and the system. However,
we do not see a systematic way of classifying them into inputs, outputs or inquiries.

The main difficulty with object-oriented notations is that they mix requirements issues
and technical design issues. Moreover, behavior diagrams are not precise enough to properly
classify function components.

13

4.6.3 Adequacy for Specifying Information Systems

Object-oriented notations are widely spread in the industry. There is no doubt that they
can be used for specifying information systems. However, there is no experimental evidence
that they are the most cost-efficient notations for specifying systems.

Although we said that UML has a formal syntax and a formal semantics, its diagrams are
not as expressive as the other formal specification languages presented in the previous sec-
tions. To write complete specifications, one must supplement the diagrams with a language
like OCL.

Strengths

1. good abstraction mechanisms: classification, encapsulation, aggregation, specializa-
tion;

2. close to object-oriented programming languages;

3. graphical notation.

Weaknesses

1. relationship and consistency between diagrams are not well defined;

2. the notion of correctness between a specification and an implementation is not defined;

3. behavioral diagrams do not provide a complete specification of the system behavior.

4.7 Summary of Evaluation

Table 1 presents a summary of our evaluation for function point formalization and infor-
mation systems specification. Each specification language class is given an overall rating
in terms of three levels (good, fair, or weak), which provides a crude ordering. We also
list dominant strengths, identified with a “+”, and weaknesses, identified with a “-”. The
following acronyms are used:

• DC : data component in function points

• DS : data structure in information systems

• EO : external output in function points

• EQ : external inquiry in function points

• FC : function component in function points

• RET : record type in function points

14

Specification Function Points Information Systems
Language Class Formalization Specification

State Machine Good Good
+ identify FC and DC + model DS
− distinguish EQ and EO − event ordering
− identify RET in DC

Traces Fair Good
+ identify FC + state abstraction
− distinguish EQ and EO − complex DS management
− no DC

Algebraic Weak Fair
− identify FC + basic DS
− identify DC − axiom derivation

− validation
Process Algebras Weak Fair

− identify FC + event ordering
− identify DC + parallelism

− DS management
Modal Logics Weak Fair

− identify FC + express properties
− identify DC − DS management

Object-oriented Fair Fair
+ identify FC + DS abstraction mechanisms
− classify FC − behavior specification
− identify DC

Table 1: Summary of Language Class Evaluation

5 Conclusion

It stems from our evaluation that state machines are the most appropriate languages for
formalizing function points. Hence, they should be the first candidates. If we consider
the adequacy for specifying information systems, then trace specifications are also good
candidates; for some applications, they are even more appropriate than state machines. On
the other hand, they are weaker than state machines for formalizing function points.

Another factor that we can take into account for our selection is industrial usage. A
formalization of function points based on the most widely used notation would facilitate its
integration into industrial practice. Object-oriented languages are predominant in industry,
but they are less adequate for the formalization.

Considering all these issues, we propose the following research directions:

• formalize function points using state machine languages;

• define heuristics to estimate function points from trace specifications;

15

• adapt object-oriented notations so that they can be used to formalize function points.

References

[1] Abrial, J.-R.: The B-Book. Cambridge University Press, 1996.

[2] Abran, A., Robillard, P. N.: Reliability of Function Points Productivity Model for Enhancement
Projects (A Field Study), Conference on Software Maintenance, Montreal, Quebec, Canada, 1993,
80–87.

[3] Albrecht, A.J., Gaffney, J.E.: Software Function, Source Lines of Code, and Development Effort Pre-
diction: A Software Science Validation. IEEE Transactions on Software Engineering, SE-9(6) (1983)
639–648.

[4] A. Arnold. MEC: a system for constructing and analyzing transition systems. In J. Sifakis, ed., Au-
tomatic Verification of Finite State Systems, Lecture notes in Computer Science, Vol. 407, 117–132,
Springer, 1989.

[5] M. von der Beeck. A comparison of statecharts variants. In H. Langmaack, W.-P. de Roever and J.
Vytopil, eds., Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer
Science, Vol. 863, 128–148, Springer, 1994.

[6] Bergstra, J.A., J.W. Klop: Algebra of Communicating Processes with Abstraction, Theoretical Com-
puter Science 37(1) (1985) 77–121.

[7] Bolognesi, T., E. Brinksma: Introduction to the ISO Specification Language LOTOS, Computer Net-
works ISDN Systems 14(1) (1987) 25–59.

[8] G. Booch. Object-Oriented Analysis and Design with Applications, 2nd edition, Benjamin-Cummings,
1994.

[9] Broy, M., F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, R. Weber: The Design of Distributed
Systems — an Introduction to FOCUS, Technische Universität München, Institut für Informatik, TUM-
I9203, January 1992

[10] Broy, M., C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regensburger, O. Slotosch, K.
Stølen: The Requirement and Design Specification Language SPECTRUM. An Informal Introduction,
Version 1.0, Technical Report TUM-I9311, Institut für Informatik, Technische Universität München,
Germany, 1993.

[11] Broy, M., Coleman, D., Maibaum, T., Rumpe, B.: PSMT — Workshop on Precise Semantics for
Software Modeling Techniques, Technical Report TUM-I9803, Institut für Informatik, Technische Uni-
versität München, Germany, 1998.

[12] Burstall, R.M., J.A. Goguen: The Semantics of CLEAR, a Specification Language, Proc. Advanced
Course on Abstract Software Specification, Lecture Notes in Computer Science, Vol. 86, Springer-
Verlag, 1980, 192–232.

[13] CoFi Task Group on Language Design: CASL — The CoFi Algebraic Specification Language — Design
Proposal, http://www.brics.dk/Projects/CoFI/index.html, 1998.

[14] Feijs, L.M.G., H.B.M. Jonkers, C.A. Middelburg: Notations for Software Design. FACIT Series,
Springer-Verlag, 1994.

16

[15] Clarke, E.M., E.A. Emerson: Design and Synthesis of Synchronisation Skeletons using Branching Time
Temporal Logic, Proc. Workshop of Logics of Programs, Lecture Notes in Computer Science, vol. 131,
1981, 52–71.

[16] P. J. Denning, J. B. Dennis and J. E. Qualitz. Machines, Languages and Computation, Prentice Hall,
1978.

[17] Desharnais, J.-M., St-Pierre, D., Maya, M., Abran, A.: Full Function Points: Counting Practices
Manual, Rules and Procedures, Université du Québec à Montréal, Montréal, Technical Report no.
1997–06, November 1997.

[18] J. Desharnais, M. Frappier, R. Khédri and A. Mili. Integration of sequential scenarios. In M. Jazayeri
and H. Schauer, ed., 6th European Software Engineering Conference / 5th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Lect. Notes in Comp. Sci., Vol. 1301, 310–326, Springer,
1997.

[19] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, ed., Programming Languages: NATO
Advanced Study Institute, 43–112, Academic Press, 1968.

[20] Dolado, J.J.: A Study of the Relationships among Albrecht and Mark II Function Points, Lines of
Code 4GL and Effort, The Journal of Systems and Software, 37(2) (1997) 161–173.

[21] Ehrig, H., B. Mahr: Fundamentals of Algebraic Specification 1, Springer-Verlag, 1985.

[22] J. Ellsberger, D. Hogrefe and A. Sarma. SDL — Formal Object-Oriented Language for Communicating
Systems, Prentice Hall, 1997.

[23] J. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence. Science of
Computer Programming, 13, 219–236, 1989.

[24] Frappier, M., St-Denis, R.: A Specification Method for Cleanroom’s Black Box Description. 31st Hawaii
International Conference on System Sciences, IEEE Computer Society Press, 1998.

[25] Furey, S., Kitchenham, B.: Point/Counterpoint Function Points, IEEE Software, (14)2 (1997) 28–33.

[26] Gaudel, M-C.: Structuring and Modularizing Algebraic Specifications: the PLUSS Specification Lan-
guage, Evolutions and Perspectives, Proc of the 9th Symposium on Theoretical Aspects of Computer
Science, Lecture Notes In Computer Science, vol. 577, Springer-Verlag, 1992.

[27] Goguen, J.A., T. Winkler: Introducing OBJ3, SRI International, 1988.

[28] Guttag, J.V., J.H. Horning: LARCH: Languages and Tools for Formal Specification. Springer-Verlag,
1993.

[29] Allemand, M., Attiogbé, C. Habrias, H., editors (1998) Proc. of International Workshop on Comparing
Systems Specification Techniques, Institut de recherche en informatique de Nantes, Nantes, (France),
March 26–27, 1998.

[30] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8,
231–274, 1987.

[31] D. Harel. On the formal semantics of statecharts. Proc. 2nd IEEE Symposium on Logic in Computer
Science, 54–64, Ithaca, NY, 1987.

[32] D. Harel. On visual formalisms. Communications of the ACM, 31(5), 514–530, May 1988.

[33] Hoare, C.A.R. (1985) Communicating Sequential Processes, Prentice Hall.

17

[34] G. J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall, 1991.

[35] J. J. M. Hooman, S. Ramesh and W.-P. de Roever. A compositional axiomatization of statecharts.
Theoretical Computer Science, 101, 289–335, 1992.

[36] IFPUG (International Function Point Users Group): Function Point Counting Practices Manual, Re-
lease 4.0. Westerville. Ohio: International Function Point Users Group, 1994.

[37] i-Logix Inc. Andover, MA 01810, USA http://www.ilogix.com/.

[38] ISBSG (International Software Benchmarking Standards Group): Benchmarking Repository, Victoria,
Analysis, Release 3, June, 1996.

[39] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard. Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, 1992.

[40] Jackson, M. (1983) System Development, Prentice Hall.

[41] Jeffery, D.R., Low, G.C.: Comparison of Function Point Counting Techniques, IEEE Transactions on
Software Engineering, SE-19(5) (1993) 529–532.

[42] Jones, C.B.: Systematic Software Development using VDM, second edition, Prentice Hall, 1989.

[43] Jones, E.L.: Automated Calculation of Function Points, Proc. of the 4th Software Engineering Research
Forum, Boca Raton, Florida, 1995.

[44] Kemerer, C.F., Porter, B.S.: Improving the Reliability of Function Point Measurement: An Empirical
Study, IEEE Transactions on Software Engineering, 18(11) (1992) 1011–1024.

[45] Kemerer, C.F.: Reliability of function points measurement: a field experiment, Communications of the
ACM 36(2) (1993) 85–97.

[46] Kitchenham, B.: Using Function Points for Software Cost Estimation — Some Empirical Results,
Tenth Annual Conference of Software Metrics and Quality Assurance in Industry, Amsterdam, 1993.

[47] Kitchenham, B., Kansala, K.: Inter-item correlations among function points, Proceedings First Interna-
tional Software Metrics Symposium , IEEE Computer Society Press, (Cat. No.93TH0518-1), Baltimore,
MD, USA, 1993, 11–14.

[48] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and Systems,
16, 872–923, May 1994.

[49] L. Lamport. TLA in pictures. IEEE Transactions on Software Engineering, 21 (9), 768–775, September
1995.

[50] Lano, K.:Formal object-oriented development, Springer-Verlag, 1995.

[51] Manna, Z., A. Pnueli: The temporal logic of reactive and concurrent systems, Springer-Verlag, 1992.

[52] Matson, J.E. , Mellichamp, J.M.: An object-oriented tool for function point analysis, Expert Systems,
101 (1993) 3–14.

[53] Matson, J.E., Barrett, B.E., Mellichamp, J.M.: Software development cost estimation using function
points, IEEE Transactions on Software Engineering, SE-20(4) (1994) 275–287.

[54] Mazzucco, F.A.: IEF—Automatic Function Point Count, Proc. of Proc. of the Conference on Software
Measurement and Management (IFPUG’92), Baltimore, Maryland, 1992, 169–181.

18

[55] G. H. Mealy. A method for synthesising sequential circuits. Bell System Tech. J., 34(5), 1045–1079,
September 1955.

[56] Mendes, O., Abran, A., Bourque, P.: Function Point Tool Market Survey, Research Report, Université
du Québec à Montréal, Software Engineering Management Laboratory, Montréal, Canada, December,
1996.

[57] Mills, H.D., A.R. Hevner, R.C. Linger: Principles of information systems analysis and design, Aca-
demic, 1986.

[58] Skuce, D.R., Mili, A.: Behavioral Specifications in Object Oriented Programming, Journal of Object
Oriented Programming, January, 1995, 41–49.

[59] Mills, H.D., V.R. Basili, J.D. Gannon, R.G. Hamlet: Principles of Computer Programming: A Mathe-
matical Approach. Allyn and Bacon, 1987.

[60] Milner, R.: Communication and Concurrency Prentice Hall, 1989.

[61] E. F. Moore. Gedanken-experiments on sequential machines. Annals of Mathematics Studies, Vol. 34,
Automata Studies, 129–153, Princeton University Press, Princeton, NJ, 1956.

[62] ObjecTime Corporation Limited, Kanata, Ontario, Canada,
http://www.objectime.on.ca/.

[63] Paton, K., Abran, A.: A Formal Notation for the Rules of Function Point Analysis, Research Report,
Université du Québec à Montréal, Software Engineering Management Laboratory, Montréal, Canada,
April, 1995.

[64] RAISE Method Group: The RAISE Development Method. BCS Practitioner Series, Prentice Hall, 1995.

[65] Rational Software (1997) Unified Modeling Language Summary, version 1.1, September 1st,
http://www.rational.com/uml/ .

[66] Rational Software (1997) UML Semantics version 1.1, September 1st,
http://www.rational.com/uml/ .

[67] Rational Software (1997) Object Constraint Language Specification, version 1.1, September 1st,
http://www.rational.com/uml/ .

[68] Rask, R.: Algorithms for Counting Unadjusted Function Points from Dataflow Diagrams, University
of Joensuu, Joensuu, Finland, Research report A-1991-1, September 30, 1991.

[69] Rask, R.: Counting function points from SA descriptions, Proc. of Annual Oregon Workshop on Soft-
ware Metrics, Silver Falls, Oregon, 1991.

[70] J. Rumbaugh. Object-Oriented Modeling and Design, Prentice Hall, 1991.

[71] Schilling, M.: Counting Function Points From Entity Relationship Models, Proc. of the Conference on
Software Measurement and Management (IFPUG’96), February 5–9, Rome, Italy, 1996.

[72] B. Selic, G. Gullekson, P. T. Ward. Real-Time Object-Oriented Modeling, John Wiley & Sons, 1994.

[73] Spivey, J.M.: Understanding Z : A Specification Language and its Formal Semantics, vol. 3 of Cam-
bridge Tracts in Theoretical Computer Science, Cambridge University Press (UK), 1988.

[74] Symons, C.R.: Software Sizing and Estimating: Mk II FPA, John Wiley, Chichester, U.K., 1991.

[75] Telelogic, Malmö, Sweden, http://www.telelogic.se/.

19

[76] VERILOG, Toulouse CEDEX, France, http://www.verilogusa.com/.

[77] Wang, Y., D.L. Parnas (1994) Simulating the Behavior of Software Modules by Trace Rewriting. IEEE
Transactions on Software Engineering, 20(10) 750–759.

[78] Wittig, G.E., Finnie, G.R.: Software design for the automation of unadjusted function point counting,
Proc. of Business Process Re-Engineering: Information Systems Opportunities and Challenges, B.C.
Glasson et al, eds, IFIP TC8 Open Conference, Australia, Elsevier Science, 1994.

[79] Whitmire, S.A.: Applying function points to object-oriented software models, in Software engineering
productivity handbook, J. Keyes, Ed.: McGraw-Hill, 1992, 229–244.

20

