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Abstract—Temporal properties are very common in various
classes of systems, including information systems and security
policies. This paper investigates two verification methods, proof
and model checking, for one of the most frequent patterns
of temporal property, the absence pattern. We explore two
model-based specification techniques, B and Alloy, because of
their adequacy for easily specifying systems with complex data
structures, like information systems. We propose a first-order,
assertion-based, sound and complete strategy to verify the
absence pattern. This enables the proof of the absence pattern
using conventional first-order provers. It also significantly
increases the size of the models that can be checked, when
compared to traditional LTL model checking techniques. The
approach is illustrated throughout a case study.
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I. INTRODUCTION

The specification and the verification of temporal (also
called dynamic) properties play an essential role in the de-
velopment process of Information Systems (IS). Contrary to
invariance properties, dynamic properties permit to describe
advanced properties on traces of systems. In this paper, we
are particularly interested in the dynamic properties that
can be expressed by the absence pattern introduced in [5]:
Abs(P,, After P; Until P3). This pattern expresses that
some states, represented by predicate P», should not be
reached after the system entering a state that verifies P
until predicate P3 becomes fulfilled; P5 does not need to be
reached. The absence property can be expressed in LTL [19]
as D(Pl = x(ﬁPQWPJ))

In practice, this kind of properties is very common and
useful in several domains and applications. In a ticket sale
system for instance, we should verify that after reserving
a ticket, the client does not get the ticket before paying it.
Similarly in the transport domain, a signal should remain
closed after a train has passed it until the route becomes
completely free. In a typical security policy, some actions
are forbidden until proper authorization has been granted.

There are three main approaches to verifying temporal
properties: testing, model checking or theorem proving.
Testing is the most widely used method in practice, but it
suffers from a lack of automation and very limited coverage
of the test space. Model checking has the advantage of
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being more automatic, but it quickly suffers from com-
binatorial explosion, thus limiting the size of the models
checked. Consequently, the confidence in the correctness
of the system is limited to the relatively small size of the
models analyzed. Theorem proving requires more human
intervention and sometimes considerable expertise, but it
certifies the correctness of the system, since proofs are valid
for any models. However, little attention has been paid so
far to the proof of temporal properties, because they are
more complex to carry out than typical invariance properties.
In this paper, we focus on proving and model checking as
two alternatives, because of their ability to ensure a higher
level of correctness than testing. These two verification
techniques can be applied either on the source code or on
an abstract specification of the system. Verifying the source
code is more desirable, because it ensures correctness of
the actual system. However, verifying the source code is
harder than verifying an abstract specification, because too
many implementation details are involved. Model checking
is often inapplicable to source code without constructing
an abstraction of the source code, thereby decreasing the
level of automation and potentially decreasing the level of
confidence in the correctness of the system [21]. Proofs on
source code are also more difficult to carry out, because
there are considerably more proof obligations to deal with.

The advent of service-oriented architectures, generative
programming techniques, domain specific languages, and
automatic refinement of abstract specifications into exe-
cutable source code, foster the use of abstract specifications.
This opens new perspectives for verifying properties on
abstract specifications rather than source code. In this paper,
we explore this new perspective for the absence pattern.
We have chosen two model-based methods to specify and
verify specifications: B [1] and Alloy [9]. Their specification
languages are rich enough to easily deal with abstract spec-
ification of various classes of systems. They are supported
by effective tools for either proof or model checking.

The B method has been successfully used over the last
two decades on numerous industrial projects of significant
size (up to 158 KSLOC) for constructing safety critical
systems in various domains like rail transport, aeronautics,
automobile, defence and R&D. More than 25 cities all over



the world now use subway and train systems whose control
systems were developed and proved correct using B. This
method supports the whole system development life cycle,
from specification to implementation, using refinement, and
supports formal proof of correctness of the implementation
with respect to the abstract specification. Invariance prop-
erties can be expressed and proved. Temporal (dynamic)
properties are not supported. Ad hoc techniques can be
used to encode a dynamic property into invariants, but they
require tweaking of the specification, by adding new state
variables, making the specification more complex. Thus,
they remain complex to achieve in practice. B is supported
by a suite of tools. We use Atelier B [2] for proofs and
ProB [13] for model checking. ProB supports LTL and a
subset of CTL. We could also use the new derivative of B,
Event B, which offers an event-driven view of the system
and a different refinement mechanism. Event B is also
supported by tools like Rodin and ProB. For our purpose,
the differences between the two notations are irrelevant.

Alloy is a language based on first-order logic with inte-
gers and relations. The Alloy analyzer translates first-order
formulas into boolean formulas and uses conventional SAT
solvers like SAT4J, MiniSat, and ZChaff, to find models
of specifications and to check first-order logic assertions on
all models. The relational language of Alloy is roughly as
expressive as the the set-theoretic language of the B notation,
thus the same classes of systems can be specified using
either languages. Alloy does not support the verification of
temporal formulas expressed in LTL or CTL. To do so, one
has to translate the temporal formula into equivalent first-
order formulas. This paper provides an example of such a
transformation for the absence pattern.

In [7], six models checkers are compared for data-
intensive specifications like information systems. ProB and
Alloy emerged as two of the most versatile model-checking
tools for data-intensive systems. Alloy was the most efficient
tool in terms of model size and verification time. ProB was
the easiest to use for specification and verification, because
of its rich data structures and its support of both LTL and
CTL. Moreover, ProB allows universal quantification over
state variables in LTL formula, something which is not
supported in traditional state-based checkers like SMV or
SPIN.

The contributions of this papers are as follows. It proposes
an assertion-based technique for verifying the absence pat-
tern Abs(P,, After P, Until Ps), which can be formalized
in LTL as O(P; = X(—P,WPs)). The assertions are first-
order formula; they do not contain any temporal operators.
This technique is inspired from the work of Pnueli and
Manna [14], which provides a proof system for some LTL
formulas. We propose three different proof rules for generat-
ing these assertions, each of them being more advantageous
in specific cases. These rules are equivalent, sound and
complete. These assertions can be either proved using a first-

order theorem prover like the Atelier B prover, or model
checked.

These assertions being first-order formula, instead of
temporal formula, they can be rapidly checked using Alloy
on larger models than the corresponding LTL formula in
conventional LTL model checkers like ProB, SPIN, FDR2,
CADP and SPIN. Because larger models can be checked,
our approach ensures a higher degree of confidence in the
correctness of the specification when model checking is
used. To illustrate our approach, we use the same case
study as in [7], a library system, to allow for comparisons.
In [7], the largest model that could be checked for the given
temporal formulas contained 5 books and 5 members using
SPIN. FDR2, CADP, NuSMV and ProB were limited to 3
members and 3 books without blowing up memory on a 4GB
workstation. SPIN performs slightly better due to its on-the-
fly checking strategy. Using our assertion-based approach,
Alloy can check the absence pattern for 5 members and 5
books in less than 0.6 seconds, and up to 36 members and
36 books in less than 9 minutes, with less than 665MB of
memory.

Our assertion-based approach also enables provers in
model-based techniques like B, Z, VDM and ASM to prove
absence properties, without having to tweak a specification
by adding new variables. The drawback of our approach is
that it requires one to find a formula similar to an invariant,
like the loop invariant used in the correctness proof of a
loop. However, we propose heuristics to find this invariant-
like formula and use the ProB model checker or Alloy to
guess this invariant using counterexamples generated by the
model-checking process.

In the literature, the common approaches to verify patterns
of dynamic properties are mainly based on the use of model
checkers and testing techniques. In [3], a verification tool
that permits to check a wide range of properties on UML
dynamic diagrams [18] is provided. These properties are
expressed according to the patterns defined in [5]. To do that,
the UML diagrams together with the properties to verify are
translated and checked with SMV [16] to detect any property
violation. These same patterns are verified in [22] using a
monitoring based-approach to guarantee the correctness of
web service conversations modeled with UML2 sequence
diagrams. Global sequence diagrams, representing the web
service conversations and the properties, are mapped into
non-deterministic finite automata in order to check them.

In [14], proof rules are provided for several forms of LTL
formula. The rule WAIT is the closest one that could be used
to prove the absence property, by applying it to each oper-
ation op of a B machine. The B notation “[op]P” denotes
Dijkstra’s weakest-precondition wp(op, P) of operation op
wrt predicate P, i.e., the states where op is guaranteed
to terminate in P. Pre(op) denotes the precondition of
operation op.
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Because of the next operator involved in the LTL expres-
sion of the absence pattern, this rule is close, but inappropri-
ate. In fact, when P, = Pj5 and if P, holds after P; and P;
does not, the absence property Abs(P, After P; Until Ps)
is falsified while the WAIT rule satisfies it. In addition, the
proof of premise (¢ = —P») may require invariants, which
must themselves be proved over all operations of the system,
thus making it quite hard to use in practice. We propose
rules to avoid this specific problem by defining necessary
and sufficient premises whose proof only uses the invariant
of the original specification (See section V).

This paper is structured as follows. Section II presents a
quick overview of the B method, while Section III describes
the case study, a subset of the library specification used
in [7]. Section IV describes the assertions that can be used
to prove the absence property. Then we show how these
assertions can be proved in B and model-checked in Alloy
in Section V. We propose two additional variants of these
assertions in Section VI. We describe how the soundness and
completeness of these assertions can be verified in Alloy.
A formal hand-made proof is provided in the appendix of
this paper. Finally, we conclude with an appraisal of our
contributions in Section VIII.

II. OVERVIEW OF THE B METHOD

Introduced by J.R Abrial [1], B is a formal method for
developing safe systems. A “safe system” satisfies some
safety properties and does no harm. To this aim, a B devel-
oper has to express such properties as invariants and specify
the adequate conditions under which operations should be
executed in order to maintain the desired properties. These
conditions, called preconditions, aim at reducing the set
of allowed system behaviors to those that preserve the
invariants. We define Pre(op) as [op]true.

In B, the specifications are organized into abstract ma-
chines. Each machine encapsulates state variables on which
operations are expressed. The set of the possible states of
the system are described using an invariant. The invariant
is a predicate in a simplified version of the ZF-set the-
ory [12], enriched with many relational operators. Opera-
tions are specified in the Generalized Substitution Language
(GSL) [1]. A substitution is like an assignment statement.
An elementary substitution is denoted by x := FE, where
x is a state variable and E an expression. It allows one to
identify which variables are modified by the operation, while
avoiding mentioning ones which are not. The generalization
allows the definition of non-deterministic and preconditioned
substitutions. To ensure the correctness of a B specification,
a set of proof obligations is generated for each B component.
These proofs aim at verifying that the invariant of the
system is satisfied after the execution of each operation.
Of course, such an invariant is assumed to be satisfied

before an operation is executed. For each invariant Inv
and operation op whose precondition and substitution are P
and S respectively, the following proof obligation is raised:
(Inv A P) = [S]Inv.

III. CASE STUDY PRESENTATION

We illustrate our proposal with a library management
system. The system has to manage book loans to mem-
bers. Each member may either borrow (Lend) or reserve
(Reserve) a book if the latter is already lent to another
member. Several reservations may be made on the same
book using a waiting queue. After doing a reservation on
a book, a member borrows (Take) the book when the mem-
bers, who made reservations before her/him, have already
borrowed and returned (Return) the book. Also, we make
the assumption that a member cannot borrow more than
MaxNbLoans books at the same time. A subset of the
B specification corresponding to this system is included in
figure 1, where the following operators are used.

e x — y denotes the pair (z,y).

« the negative domain restriction of relation r by set X
is defined as X<ar={z—y|z—yernx ¢ X}

« the override of relation r; by relation 7o is defined as
r1<s¢ry = (dom(rg)<ry) Urs.

o The domain of a relation r is defined as dom(r) = {« |
Jy-z—yer}

« A sequence of length n of elements of X is represented
in B with a total function of type 1..n — X.

o The set iseq(X) denotes the injective sequences of
elements of X.

e 5 < x denotes the insertion of element x at the end of
sequence s.

« tail(s) represents sequence s, without its first element.

o first(s) represents the first element of sequence s.

o The substitution S; || Sz denotes the simultaneous
execution of S7 and S5, assuming that S; and So
operate on disjoint sets of modified variables.

« Given an operation of the form PRE P THEN T END,
we let S,, denote the substitution 7" of op.

Using the prover of Atelier B, we have proved the
correctness of the Library specification. Atelier B generates
12 proof obligations to ensure that the execution of each
operation preserves the invariant: 6 of them are discharged
automatically by the prover while the others require our
intervention to help the prover find the right rules to apply.
Nevertheless, such proof obligations do not guarantee fair-
ness to ensure, for instance, that if a member me; reserves a
book bo; before a member mes, he will get the book before
mes. Such a property is expressed using the absence pattern
introduced in [5] as follows:



Machine Library

Sets Books; Members
Variables loan, reservation
Constants MaxNbLoans
Properties @ MaxNbLoans € NAT;
Invariant

loan € Books —+ Members N\
reservation € Books — iseq(Members) N
Vme. (me € Members =
card(loan™*[{me}])) < MaxzNbLoans)
DEFINITIONS
/*Index(bo, me) gives the position of a member me
in the reservation queue of a book bo*/
Index(bo,me) = (reservation(bo)) ™" (me)
Operations
Lend(me , bo)=
PRE me € Members A bo € Books A
bo ¢ dom(loan) A reservation(bo) =[] A
card(loan™*[{me}]) < MaxzNbLoans
THEN
loan := loan <+{bo — me}
END;
Take(me , bo)=
PRE me € Members A bo € Books A
bo ¢ dom(loan) A first(reservation(bo)) = me) A
card(loan™ ' [{me}]) < MaxNbLoans
THEN
loan := loan <{bo — me}||
reservation := reservation<
{bo > tail(reservation(bo))}
END;
Reserve(me, bo)=
PRE me € Members A bo € BooksA\
me ¢ ran(reservation(bo))A bo — me ¢ loan A
((bo € dom(loan)) V (reservation(bo) # []))
THEN
reservation := reservation<
{bo — ((reservation(bo) + me)}
END;
Return(bo)=
PRE bo € Books A bo € dom(loan) THEN
loan := {bo}<loan
END
END

Figure 1. The B specification of the library system

Abs(boy +— mey € loan,

After(me; € ran(reservation(boy)) A
meg ¢ ran(reservation(boy)) A
bo1 — mey ¢ loan)

Until(boy — me; € loan))

which is expressed in LTL by:

O(me; € ran(reservation(boy)) A
mes ¢ ran(reservation(boy)) A
boy — meg ¢ loan
=
X(boy — meg ¢ loan W boy — me; € loan))

ey

We have checked this LTL formula with ProB on the
specification of figure 1, which does not include all the
operations used in the specification of [7] (five operations are
missing, i.e., the operations for creating and deleting books
and members, plus the cancellation of a reservation). Thus,
its transition system is smaller than that of the complete
library system [7]. On this reduced state space, the largest
model that ProB can check contains 4 books and 6 members.
As indicated before, on the complete specification, ProB is
limited to 3 books and 3 members. This is why the rest of
the paper addresses the proof of such properties by defining
the B proof obligations that are necessary and sufficient to
prove them.

IV. DEFINING ASSERTIONS TO VERIFY THE ABSENCE
PATTERN

In this section, we describe the process we have de-
fined to verify that a system satisfies an absence property
Abs( Py, After P; Until P;) and we use the case study of
the previous section to illustrate it.

A. Formal Definition of the Absence Pattern

Because we use an assertion-based method, our definition
of the absence pattern is slightly stricter than the temporal
formula O(P; = X(—P;WPF3)). This formula is defined
over traces of a system; hence, it applies only to states
reachable from the initial state. Our approach will consider
all states reached from P;; however, some of the states of
P, may not be reachable from the initial state. Let o be a
state satisfying Pj, but not reachable from the initial state.
Furthermore, suppose that a transition from o leads to a
state satisfying P». Since o is not reachable from the initial
state, it does not falsify the temporal property. However, it
will falsify our definition of the absence property, since we
consider all states in P;. In that particular (and unfrequent)
case, one can still use our assertion-based approach by
restricting predicate P; to states reachable from the initial
state. Proofs and model checking are easier to conduct when
our stricter definition is used, without sacrificing generality.

To formally define the semantics of the absence pattern:
let us introduce the following notations.

1) Let ¥ be the set of states of machine M. Let o = P
denote that state o satisfies predicate P. Let op(o)
denote the states reached after executing operation
op from state o (if the operation is nondeterministic,
several states are possible).

2) For a given predicate P, ¥p denotes the subset of X
that satisfies P:

Yp={oc|oce€eXA o P}

3) For a given predicate P, Paths(P) denotes the set of
the paths starting from P by executing the different
operations Ops of the system:

Paths(P) = {(00,01,...) |00 € Zp AVi.(i > 1=
Jop.(o; € op(oi-1)))}



4) For a given path = (09, 01,...,04,...) and an ¢ such
that (0 <), path[i] denotes the state o; in path.

5) For a path path = (09,01, ...,04), path[i..j] denotes
the sub-path (o1,...,0;).

6) For two predicates P, and P, From_To(Py,P,)
denotes the sub-paths that start from a successor of
a P, state and do not contain any state that satisfies
PQZ

From_To(P1, Py) = {path[l..j] | path € Paths(Py)A

J>1AVE (1 <k<j= pathlk] E-FP)}
We say that a machine M satisfies property

Abs( Py, After P; Until Ps)) 2)
iff:

path € Paths(Py)
=

1 >0
ey
pathli] E P 3)

Vi. =
F>0Aj<i
3. A
pathlj] |= Ps
In the next subsection, we present our approach to defin-
ing the B proof obligations that permit to prove an absence

property.
B. Definition of the Proof Obligations

To prove property (3) on a B machine, our proposal con-
sists in demonstrating that starting from a state o satisfying
P, the system will behave as follows (See Figure 2):

V path.

Figure 2.

Graphical
Abs( Pz, After P; Until P3)

representation of property

1) After executing any first operation op:

o Predicate Pj is satisfied: definition (3) is fulfilled
and the verification stops, or

e Predicates P, and P5 are not satisfied: definition
(3) is not violated yet. The verification process
must continue because neither P, nor Pj is true.

« otherwise, definition (3) is violated. That case is
represented by dashed lines and a black state in
Figure 2 and denotes the forbidden behavior.

2) If state (—P> A —P3) is reached after executing a first
operation, we have to verify that the execution of any
operation op makes the system move to state P; or
stay in state (—Py A —P3).

This yields the following proof obligations:

1) the property is satisfied for the first operation executed:
thus, for any operation op

Y(Z,Y,0).(Pi A Pre(op) = [Sopl (P2 V P5)) (4
where T den0t3 the values of the machine variables
(x1,...,Zn), Y are the variables (y1,...,Yy,,) that
may appear in predicates P;, P, and P; and which are
distinct from variables x, and v denote the parameters

of operation op.
2) predicate P, should stay not satisfied while P5 is not
satisfied yet

V(?, ?, ?).(_‘PQ A Pre(op) = [Sop] (P2 V P3))  (5)

Let us stress that, contrary to (4) that should always be
satisfied, (5) should be satisfied only on states belonging
to From_To(Py, Ps). However predicate —P, may be
larger than set From_To(Py, Ps;), thus we may have to
restrict =P, (i.e., enlarge P») in order to be exactly equal
to this set. In order to be clearer, let us illustrate that on the
running case study and try to prove (5) for operation Take:

Y(loan, reservation, mey, mes, boy, me, bo).

boy — mey ¢ loan N\ Pre(Take)
=
[STake] (bo1 — meg & loan V boy — me; € loan)

Let us remark that the set of states denoted by predicate
(bo1 — meg ¢ loan) includes states such that book bo; is
available and member me- is at the head of the reservation
queue, i.e, before member me;. It is obvious that such states
violate the previous proof obligation since it is possible to
execute operation Take and lend book bo; to member mes
(me = mea,bo = bo1). These counterexamples are found
using a model checker like ProB or Alloy. Nevertheless,
such a counterexample is a false one since we know that
such states do not belong to From_To(P;, Ps). Indeed,
position of member mes cannot be before that of member
me; in the reservation queue, since new reservations are
added at the end of the queue. In addition, me; remains in
the queue until he borrows the book. So, the specifier, given
his knowledge of the specification and the counterexample
found, has to enrich predicate P, in order to rule out this
false counterexample. So now, we have to enlarge P, with
P’ defined by:

mey ¢ ran(reservation(boy))
V
meg € ran(reservation(boy))
A
Index(bor, mes) < Index(boy, mey)



We have to repeat the process until no counterexample is
found. By doing that, we will characterize all the states
belonging to From_To(P, Ps). This leads to the following
theorem.

Theorem 1: Let P;, P, and Ps be three predicates. Prop-
erty (Abs(P,, After P; Until P3)) is satisfied iff there exists
a predicate P’ such that the following proof obligations hold
for each operation op:

(i) Y(Z,,0).(PLAPre(op) = [Sop)(~(P2V P')V Py))

(i5) ¥(Z,¥,0).(=(P, V P') A Pre(op) =
[Sop)(=(P2 vV P') V P3)) u
The proof of this theorem is provided in appendix.

C. Characterization of From_To(P, Py)

In this section, we describe the heuristic we propose
to characterize set From_To(Py, P2). It is guided by the
search of counterexamples for proof obligation (5):

Y(Z, Y, 0).(~Py A Pre(op) = [Sop) (<P V P3))

When a potential counterexample is found, it is analyzed in
order to know whether it is a true counterexample or not. A
true counterexample corresponds to a state that is reachable
from Py, that is, it belongs to set F'rom_To(Py, Ps). If the
counterexample is a true one, then we can conclude that the
property is not satisfied. Otherwise, the user should define a
predicate P’ in order to rule out this false counterexample.
As said before, this process is repeated until no false
counterexample is founded.

From a practical point of view, to determine the potential
counterexample, we represent (5) in the following manner.
We define an abstract non deterministic initialization of the
machine on page 4 that satisfies invariant Inv and predicate
—(P2V P’) using a nondeterministic substitution of the form
x: (P), which means that values are assigned to variables
7 such that predicate P is true:

Z: (Inv A ~(Py v P'))

Then, we ask the model checker about the truth value of the
LTL property: X(—(P, V P’)) that checks whether the next
state violates —(P, V P’). If so, a counterexample is given
(3:?) In order to know if it is a true counterexample or
not, we use a similar approach by changing the initialization
of variables « into: (: (Inv A Py)), and asking again the
model checker about the truth value of the CTL [6] property:
- = . . ;
EF(z=v) that verifies whether there is a path that permits
to reach such a state. At that point, two cases are possible:
1) if there is a state o, belonging to F'rom_To(Py, Ps),
that satisfies EF(;:?), then we can conclude that
property Abs(Ps, AfterP; Until Ps) is not satisfied.
2) otherwise, the counterexample is a false one. So, we
have to define predicate P” that rules it out. The
process is then reiterated with (—(Py V (P’ V P")).

It is important to note that the LTL and the CTL formulas
we submit for model checking are not very complex because
they require only few variables to be checked and a small
number of instances is usually sufficient to highlight useful
counterexamples. Thus, the model checker will not usually
suffer from the state explosion problem and will terminate
in very reasonable time by giving the verdict. Moreover, the
designer who is verifying the property should have in mind
the set of states that can be reached from P;. So, the process
we have proposed is more a heuristic for the designer in
order to refine and reinforce his knowledge of the system.
If a counterexample is provided by the model checker, the
designer should analyse it in order to define a more general
predicate that rules it out. This is typically not a difficult
task for a designer and it is part of the process of analyzing
the behavior of the system.

V. VERIFYING THE ASSERTIONS

In this section, we illustrate how to use the proposed
assertions in B and Alloy and illustrate it on our case study.

A. Proving the Assertions in B
Applying the proof rules () and (i%), provided in Theo-
rem 1 gives the following proof obligations (POs):
« POL YV v (P, A Pre(op) = [Sop)(=(P2 V P') V Ps))
« PO2.Y U .(—P)APre(op) = [Sep](—(PyV P')V Ps))

where v includes the free variables of the absence prop-
erty ({mey, mes,bo1}) and the formal input parameters of
operation op. Predicates P;, P>, P’ and P; are as follows:

mey € ran(reservation(boy))
A
mes ¢ ran(reservation(bo1))
A
bo1 — mea & loan

Py

P (bo1 — me2 € loan)

me1 ¢ ran(reservation(boi))
\%

P ( mey € ran(reservation(boy)) )

N
Index(boi, me2) < Index(boi, me1))

P

(bo1 — mey € loan)

To be discharged using the prover of Atelier B, proof
obligations PO1 and PO2 are added as assertions (clause
ASSERTIONS of the B notation) to machine Library of
page 4. A formula of this clause must be proved using
the invariant of the machine. Table I gives the statistics we
obtained on operations Loan, Take, Return and Reserve.
The proof are not very difficult, the automatic prover fails
to discharge them because they require several steps and
also the following rule, related to the sequence structure, is
missing in its rule base:

a € iseq(b) A



Proof obligation | Automatic Proofs | Interactive Proofs
PO1 0 5
PO2 0 5
Table I

PROOF RESULTS

a# [ A
c € ran(tail(a))
=

(tail(a))~(c) =a=Y(c) — 1

B. Model Checking the Assertions in Alloy

Proving our assertions require expertise and experience
with theorems provers. These resources may not be available
in a typical development team. Using a model checker
is significantly easier than using a prover. As mentioned
earlier, conventional model checking of LTL formula over
data-intensive systems quickly suffers from combinatorial
explosion. For the case study at hand, verification is limited
to 3 or 5 books and members, depending on the model
checker used. However, when using assertions instead of
LTL formula, Alloy becomes very efficient and can solve
significantly larger models in a few seconds, thus providing
an increased confidence in the correctness of the system. For
the library system, this is particularly important: 3 books and
3 members means that we can have one member borrowing
the book and only two members reserving it, which is not
much to make sure that the reservation queue is properly

handled by all operations.

We will briefly illustrate the verification of the case study
in Alloy. The system state is represented by signatures as
follows:

sig Book{}
sig Member({}
sig Lib

{

members: set Member,

books: set Book ,
loans: books -> members,
reservations: (seq members)->books

}

Signature Lib represents the states of the system, which
contains four variables: members, books, loans, and
reservations, which is essentially the same as in the
B specification. Operators —> and seq respectively denote

Cartesian product and sequences.

Operations that define transitions on the system state are
represented by predicates. For instance, operation Take is
defined as follows.

pred Take[m:Member,b:Book,L,L’ :Lib]

// b and m are in the Library
(b in Lib.books) and (m in L.members)

// the loan limit is satisfied
(#((L.loans) .m)<Constants.maxNbLoans)

// m is the first reservation
(L.reservations.b) = (0 —> m)

// the book is not borrowed
no (b.(L.loan))

// add the new loan to loans
L’ .1locan = L.loan + (b->m)
// delete m from the list of
// reservations of b
L’ .reservations.b =
delete[L’ .reservations.b, 0]

————— Nochanges——————-
all b’ Book - b |
L’ .reservations.b’ =
L.reservations.b’
L’ .books = L.books
L’ .members = L.members

Operator “.” denotes relational composition, and be-
comes quite handy to extract the components of a relation,
in a syntax similar to object-oriented langages. Each object
in an Alloy specification denotes a relation (sets are consid-
ered as unary relations; constants and elements of sets are
singleton sets).

The correspondance with the B specification is almost one
to one, except for the following differences. The predicate
must include in its parameters the before-state (denoted here
by L) and the after-state (denoted by L’). The predicate
describes the relationship between the before-state and the
after-state. Alloy being a pure first-order logic language,
operations must describe what changes and what does not
change, whereas substitutions in B allow one to describe
only the variables that change (i.e., Alloy suffers from the
well-known frame problem). This is usually not an issue,
although in some case studies with a large number of state

variables, it can become quite cumbersome [4].
Assertions of Theorem 1 are checked as follows in Alloy.

check ThlPO1
{
all b,bo:Book,m,mel,me2:Member,L,L’ :Lib |
Pl[bo,mel,me2,L] and Transition[b,m,L,L’]
=>
not P2p[bo,mel,me2,L’] or P3[bo,mel,L’]
} for 2 Lib, 5 Member, 5 Book,
4 int, 5 seq

check ThlPO2
{
all b,bo:Book,m,mel,me2:Member,L,L’ :Lib |
not P2p[bo,mel,me2,L] and
Transition[b,m,L,L’]
=>
not P2p[bo,mel,me2,L’] or P3[bo,mel,L’]
} for 2 Lib, 5 Member, 5 Book,
4 int, 5 seq



The command check verifies that a formula is valid for all
models of the signature previously defined. The clause for
describes the bounds for the number of signature elements
considered. For these two assertions, we check pairs of
library states (2 Lib), since the assertions are on before
and after states, each library state containing up to 5 books
and 5 members. The bounds for int and seq respectively
indicates the number of bits used to represent integers and
the maximum length of a sequence; with n bits, Alloy checks
integers of the range — (2"~ 1) to 2"~ — 1. The bound for
the length of sequences must be equal to the number of
members, since in the worst case all members can reserve
the same book. Predicate P1 [bo, mel, me2, L] represents
predicate P; of the absence property, and is defined as
follows:

pred P1l[bo:Book,mel,me2:Member,L:Lib]
{

reservedBy [bo,mel, L]

not reservedBy[bo,me2, L]

not borrowedBy[bo,me2, L]

}

Predicates P, V P’ and Pj3 are represented in a similar
manner. Predicate Transition([b,m,L,L’] is a dis-
junction of the operation predicates.

pred Transition[b:Book,m:Member,L,L’ :Lib]
{
Lend[m,b,L,L"]
or Reserve[m,b,L,L"]
or Take[m,b,L,L"]
or Return[m,b,L,L"]

Alloy takes less than 0.3 seconds to check each assertion
on the complete library specification used in [7]. Figure 3
illustrates the growth in the verification time of POl for
Theorem 1 for an equal number of books and members. For
36 books and 36 members, Alloy takes 4.4 mins and 665MB
of memory using Alloy 4.1 with SAT4J on a 2.10GHz
processor.
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Figure 3. Verification time for POl (check Th1PO1) in Alloy

VI. TWO VARIANTS OF THE ASSERTIONS

In this section, we propose two variants of Theorem 1,
which are also sound and complete, to provide other al-

ternatives to prove the absence property. Depending on the
specification at hand, one may be easier to use for proofs
than the others. For model checking, they all roughly require
the same verification time, since the formula are of the same
size.

Theorem 2: Let P;, P> and Ps be three predicates. Prop-
erty (Abs(Py, After P; Until Ps)) is satisfied iff there exists
a predicate ¢ such that:

- —

(i) Y(@, ¥).(P = 0) B
(i) for each operation op whose parameters are v:
V(Z,5,7).(6 A Pre(op) = [Sy)(6 A =P2) V P3))

|
To be able to use this theorem, the user has to propose
predicate ¢ according to his/her understanding of the system
and the property to prove. To this effect, he/she may start
with P; as a candidate for ¢ and weaken it to include
states of From_To(P;, P;). For instance, P; states that
mes is not in the reservation queue. Of course, executing
operation Reserve can add mesy to the reservation queue.
These counterexamples can also be found using a model
checker and a process similar to the one presented in the
previous section. For the running example, predicate ¢ is

equal to:

mey € ran(reservation(boy))
A
boy — meg ¢ loan
¢ = A
mes € ran(reservation(boy))
=
Index(boy, mez) > Index(boy, mey))

The first condition of Theorem 2 generates less proof obli-
gations than the first condition of Theorem 1, because there
is no need to prove it for each operation. However, it may
need additional invariants to be proved, and these invariants
need to be proved for each operation. Thus, depending on
the specification, one theorem may be easier to use than the
other. For the case study at hand, condition (i) of Theorem 2
generates no proof obligation because the implication is
trivial. The second condition gives rise to 5 POs very similar
to those produced for condition (i¢) of Theorem 1 and
which are discharged by executing the same proof rules and
strategies.

The next theorem is the second variant of Theorem 1.

Theorem 3: Let Py, P> and Ps be three predicates. Prop-
erty (Abs(Py, After P; Until Ps)) is satisfied iff there exists
a predicate ¢ such that:

(i) Y(Z,9).(P = ¢)

(i) (£, 9).(6 = ~P2) .

(#i7) for each operation op whose parameters are v:
— = =

V(xz,y,v).(¢p A Pre(op) = [Sopl(¢V Ps)) ]

In this version, we have an additional condition compared
to Theorem 2, but it simplifies the third condition. The



difference between the two is that ¢ is explicitly proved to
be stronger than =P, by condition (¢7). For the case study
at hand, the candidate for ¢ is the same as the one used
for Theorem 2. The generated proof obligations are also the
same, since P» is a conjunct of ¢.

VII. CHECKING SOUNDNESS AND COMPLETENESS OF
ASSERTIONS USING ALLOY

We have developed three variants of assertions to check
the absence property. One may be easier to use than the
others for theorem proving, depending on the specification
at hand. This raises the issue of rapidly developing sound
and complete assertions for other property patterns [5]. Alloy
turns out to be very useful to rapidly check the soundness
and completeness of assertions for small generic transition
models. This helps a designer to quickly check soundness
and completeness theorems on small models, and debug
them, before formally proving them for arbitrary models.
In this section, we briefly illustrate the Alloy specification
that can be used for checking soundness and completeness

for the absence pattern.
A generic transition system on a set of states S is defined
by the following signature.

sig S {t set S}

This defines t as a relation on set S. To represent predicates
Py, P, and P3, we define them as subsets of S.

sig P1,P2,P3 in S {}
We define the states reachable from P; to P; as follows.

sig FromPltoP3 in S {}
fact { FromPltoP3 = P1l. " (t:>cp[P3]) }

A fact imposes constraints on the values of symbols in
signatures. Function cp returns the complement of a set,
thus simulating the negation of a state predicate. Operator *
computes the transitive closure of relation t post-restricted
(operator :>) to —P5;. Weakest-precondition is represented
by the following function.

fun wplr set S] set S
{

{ s :S ] s in r.S and s.r in Q}

}

The invalidity of the absence property on transition relation
t is represented by the following predicate.

S_>SI Q

pred Invalid[]
{ some s : S | s in P2 & FromPltoP3 }

Predicate Tnvalid holds when some state s satisfies P2
and is in FromP1toP3 (operator & denotes intersection).

The conditions of a soundness and completeness theorem
like Theorem 1 are defined as follows.

pred TheoremlConditions [P’

{
Pl & £t.S in wplt,cp[P2 + P’ ]+P3]

set S]

cp[P2 + P'] & t.S in wplt,cp[P2 + P’ ]+P3]
}

Finally, soundness and completeness is checked as follows.

check TheoremlSoundAndComplete(
not Invalidl[]
<=>
TheoremlConditions[cp[FromPltoP3]]
} for 5

We have to propose the value of P’. We know that it is
the complement of the set of states reachable from P,
and thus we check the equivalence between the validity of
the absence property and the theorem conditions for this
value of P’. For sets of 5 states, Alloy takes 0.25 sec
to make this verification. We can check Theorem 2 and
Theorem 3 in a similar manner, with ¢ = FromP1toP3+P1.
If the theorem is not sound and complete, Alloy provides
counterexamples which helps the designer fine tune his/her
conditions. Unfortunately, due to solemnization limitations,
Alloy cannot automatically compute a value of P’ or ¢,
because this requires a second order quantification on sets,
which Alloy cannot handle.

VIII. CONCLUSION

In this paper, we have defined three equivalent sets of
necessary and sufficient conditions for proving absence
properties of the form Abs(P,, After Py Until Ps). Such a
property ensures that starting from a state verifying P, the
system will not reach a state satisfying P, before predicate
P5 becomes true. The key idea of the suggested approach is
to characterize the set of states that can be reached starting
from any state verifying P, and before reaching any state
that would satisfy Ps. This set being defined, the proposal
consists in verifying that the execution of any operation on
these states makes the system move to a state verifying Ps
or = P,. Guidelines and a practical heuristic are provided in
this paper in order to help the user define the set of states
reachable starting from any state verifying P;.

Our approach enables the proof of the absence property
using conventional first-order theorem provers in popular
state-based methods like ASM, B, VDM, and Z. It also
significantly extends the size of models than can be model
checked, when compared with traditional LTL model check-
ers, by using a SAT-based first-order logic model checker
like Alloy.

First-order assertion-based approaches for proving other
temporal properties have been proposed: see [8], [15] for
the leadsto modality (O(P = <Q)), see [11] for several
forms of CTL* formula (i.e., CTL and LTL formula, but
not the absence pattern).

Future work include the automation of this approach to
make it more workable. We also plan to extend our approach
to take into account other kinds of property patterns that
would be interesting in information systems. An example of
these patterns is the Response pattern that permits to specify
that a state/event is always followed by another state/event.



Such a pattern will be used to state, for instance, that a
member will get a book if he/she requests it.
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APPENDIX

Correctness proof

The goal of this section is to demonstrate that Theorem 1 is correct to prove the property pattern
Abs( P, After P; Until Ps)). In other words, we have to establish that proofs obligations (i) and (i) are complete and
sound.

Are the proof obligations sound?: To establish that the proof obligations are sufficient, let us assume:

1) proof obligations (i) and (i7) are established for predicate (P, VV P’) where P’ denotes the predicate added by the
heuristic previously described.
2) for a given path (oo, ...,0(—1),04,...) of Paths(Py) and a rank i(;>1), we have:

pathli] = Pa Hy)

and let us prove that:

35.( > 0Aj§ <iApath[j] E Ps) (G1)

Let us establish goal (G;) according to the value of 7.
1) case ¢ = 1: hypothesis (H;) becomes:

path[l] E Py (Hz)

Let us assume that to move to state path[l], the system executes a given operation op’, that is:

path[0] = Pre(op') A path[1] € Sop (path[0]) (Hy)

According to proof obligation (i), we have the following for operation op’ :

V(Y, 7, param).(Py A Pre(op') = [Sop](~(Py V P') V Py))
Given that, for any predicates Py, P, and any substitution S, expression (P; = [S]P,) is equivalent to:
Vo.(o E PL= o0 edom(S)AVo'.(o/ € S(o) =o' E P))
We obtain the following:
o = (P A Pre(op’))
=
Vo. o' € Sop (0) (Ha)

Vo' =
o' E (=(PyV PV Ps)

By definition of Paths(P;), we know that:

path[O] ): P1 (H5)

Let us instantiate (H4) on states path[0] and path[1], and using hypotheses (H3) and (Hs), we obtain:

path[l} ): (_\(PQ V P/) \% P3) (H6)
(H2)+(Hg) give:

path(1] = Ps (H7)



2)

Goal (Gy) is thus discharged for (j = 1).

case ¢ > 2: let [ (I <) be the first instant such that path[l] = P, that is:

path[l] |E Po AVE.(k € 1..(1 — 1) = pathlk] = —Py)

Let us assume that to move to state path[l], the system executes a given operation op’, that is:

path[l — 1] = Pre(op”) A path[l] € Sop (path|l — 1])
According to proof obligation (ii), we have the following for operation op’:

- = —
Y(Y, x, param).
(Pre(op’) N=(Py V P') = [Sop](=(P2 V P') V Ps))
which can be rewritten into :

o = (Pre(op’) A —(Py vV P))
=
Vo. o' € Sop (0)
Vo' =
o' E (=(PyV PV P;)

It is obvious that if there is a rank m such that:

m € 1.l A path|m] = P;
then, (G;) will be discharged for (j = m). So, let us assume that

Vk.(k € 1.1 = path[k] k= ~Pj)

We can easily prove by induction and using proof obligation (i¢) of Theorem 1 that :

Vk.(k € 1.0 = path[k] = (=(Ps v P') v Py)
(Hi)+ (Hi2) give:

Vk.(k € 1.1 = pathlk] E —P")

(Hg)

(Ho)

(H1o)

(Hip)

(Hi2)

(Hi3)

By instantiating (H1o) with path[l — 1] and path[l] respectively, (Hy3) by path[l — 1] and (Hg) by path[l — 1] and

using hypothesis (Hg), we obtain:

pathl] = (~(P, v P') v Py)
(Hg)+(H14) give:

pathll] |= Py
Goal (Gy) is thus discharged for (j = 1).

(Hyy)

(H1s)



Are the proof obligations complete?: Proving that the proof obligations () and (i) are complete comes down to
demonstrating that if these proof obligations are not verified for any predicate P’, then we can conclude that property
Abs( Py, After P; Until Ps)) is false. To do that let us suppose that:

VP/.(ﬁPOi \Y —|PO”) (H16)

where PO, and PO,; denote the proof obligations ¢ and i of Theorem 1, and let us prove that

path € Paths(Py)
A
pathli] = Py
A(path,i). A (G2)
7I>0N7 <1
V. =

path[j] = —Ps
Let predicate Py Rrgs be the set of the states that verify the following two conditions:
1) cannot be reached from any state verifying P,
2) verify predicate P» or there exists a path from this state to a state that verifies predicate Ps.

Instantiating (Hy¢) with Py g gives for a given operation op:

(7, Y, param).(Py A Pre(op) A =[Sep](~(P2 V Pxrs) V Ps)) (Hi7)

or
N
T

3( s .ﬂma?&m).(ﬂ(Pg \Y PNRS) N Pre(op) A ﬁ[Sop](—\(Pz V PNRS) \Y Pg)) (His)

So, we have to deal with two cases:
o Hypothesis (H;7) is true: (Hi7) can be rewritten into:

3(8,8)-(8 F= (Pr A Pre(op)) A B € Sop(B) AB" = (P2 V Pnrs) A—F3)) (Hio)
Let (B0, Bo") be values of (3,3 that verify (Hyo):
(Bo = (P1 A Pre(op)) A Bo” € Sop(Bo) A Bo" t= (P2 V Pnrs) A —Ps))

Since By is reachable from P; and Pnrg denotes the set of the states that are not reachable from P;, 8," does not
verify Pyrs. So, By verifies P, and goal (Gy) is verified for ((path,i) = ((Bo,B0),1)).

o Hypothesis (Hig) is true: (Hig) can be rewritten into:

B (Pre(op) A —(P2V Pyrs))
3(6,8"). A
B € Sop(B)NB | (P2 V Pnrs) A =P3))

Let (B0, Bo’) be values of (3, 3) that verify this last predicate:

Bo & (Pre(op) A —~(P2V Pngs))
A (Hap)

Bo" € Sop(Bo) A Bo' E (P2 V Pyprs) A —Ps)

If state [y is reachable from a state verifying P, that is:



a | P
AN
I, .-y am). | Nizip i € From_To(Py, Ps3)
AN
an = By

In that case, By’ is also reachable from P;. Since Py rg denotes the set of the states that are not reachable from P,
By’ does not verify Pygrs. So, By verifies P, and goal (Gz) holds for (path,i) = ((ag, ..., n,Bo’),n + 1).

Now, let us assume that 3, is not reachable from P;. If 3, verifies P, , By would verify Py rg because 3y’ is reachable
from By. This would contradict (Hyg). Otherwise, 3y’ should verify Pyrg , then 3y would verify Pyrg because £y’
is reachable from (3. This would also contradict (Hag).



