Université de Sherbrooke Département d'informatique

IGL501-IGL710 : Méthodes formelles en génie logiciel Examen périodique

Professeur: Marc Frappier

Samedi 19 octobre 2019, 9 h00à 12 h00.

Notes importantes:

- Toute documentation permise.
- La correction est, entre autres, basée sur le fait que chacune de vos réponses soit :
 - claire, c'est-à-dire lisible et compréhensible pour le lecteur;
 - précise, c'est-à-dire exacte et sans erreur;
 - concise, c'est-à-dire qu'il n'y ait pas d'élément superflu;
 - complète, c'est-à-dire que tous les éléments requis sont présents.
- nombre de pages de l'examen, incluant celle-ci : 4.

Pondération:

Question	Point	Résultat
1	20	
2	20	
3	35	
4	25	
total	100	

Nom:	Prénom :	
Signature ·	Matricule ·	

- 1. (20 pt) Traduisez les énoncés suivants avec le langage de Tarski.
 - (a) Il existe un carré à la gauche de tous les triangles.

Solution:

```
\exists x (\mathsf{Square}(x) \land \forall y (\mathsf{Triangle}(y) \Rightarrow \mathsf{LeftOf}(x,y)))
```

(b) Si deux carrés sont sur la même ligne, alors ils sont de même taille.

Solution:

```
\forall x \forall y (\mathsf{Square}(x) \land \mathsf{Square}(y) \land \mathsf{SameRow}(x,y) \Rightarrow \mathsf{SameSize}(x,y))
```

(c) Une condition suffisante pour que les carrés soient petits est que les pentagones soient petits.

Solution:

```
\forall x (\mathsf{Pentagon}(x) \Rightarrow \mathsf{Small}(x)) \Rightarrow \forall x (\mathsf{Square}(x) \Rightarrow \mathsf{Small}(x))
```

(d) Une condition nécessaire pour que pentagones soient petits est que les carrés soient petits.

Solution:

```
\forall x (\mathsf{Pentagon}(x) \Rightarrow \mathsf{Small}(x)) \Rightarrow \forall x (\mathsf{Square}(x) \Rightarrow \mathsf{Small}(x))
```

(e) L'objet le plus grand est un carré.

Solution:

```
\exists x (\mathsf{Square}(x) \land \forall y (x \neq y \Rightarrow \mathsf{Smaller}(y, x))
```

- 2. (20 pt) Pour chaque opération suivante, indiquez si elle préserve l'invariant. Si elle le préserve, justifiez votre réponse (un texte suffit; vous pouvez aussi donnez une preuve si vous préférez). Si elle ne le préserve pas, donnez un contre-exemple et trouvez la précondition la plus faible (la moins restrictive) qui permet de préserver l'invariant.
 - (a) Opération : A(x) = PRE x : 0..3 & y : 3..k THEN y := y-x END Invariant : y : 0..k

Solution: Oui

(b) Opération: B(x) = PRE x : 1..2 & y : -4..3 THEN CHOICE y:=y+x OR y:=y-x END END Invariant : y : -5..5

Solution: Non. Contre-exemple: x=2 et y=-4 avec y:=y-x. Précondition: y:-3..3

(c) Opération: $C(x,y) = PRE \ x : 0..k \ \& \ y \ 0..k \ THEN \ f(x) := f(y) \mid \mid f(y) := f(x) \ END$ Invariant: f: 0..k >->> 0..k

Solution: Oui

(d) Opération : D = ANY x,y WHERE x : 0..3 & y : 0..3 THEN z := z+x+y END Invariant : z : 0..9

Solution: Non. Contre-exemple: x=3 et y=3 avec z:4..MAXINT. Précondition: z<4

(e) Opération : D = SELECT x > 1 THEN x := x-1 WHEN x < 1 THEN x := -x END Invariant : x := x-1 WHEN x < 1 THEN x := -x END

Solution: Oui

- 3. (35 pt) Modélisez une liste de nombres naturels en B. Un nombre ne peut apparaître plus d'une fois dans la liste. Les positions des éléments de la liste débutent à 1. La liste a une capacité maximale de k. Voici les opérations à spécifier.
 - add(x : NAT)Ajoute l'élément x à la fin de la liste. L'élément ne doit pas déjà appartenir à la liste.
 - addp(x : NAT, p : NAT)

Ajoute l'élément x à la position p de la liste. L'élément ne doit pas déjà appartenir à la liste. Les éléments qui sont dans la liste à partir de la position p sont décalés d'une place, ie, si $p' \geq p$ est la position d'un élément, alors il se retrouve en position p' + 1 après l'insertion de x. Soit n la taille de la liste. Si p = n + 1, alors l'élément est ajouté à la fin de la liste.

 del(x : NAT)
 Supprime l'élément x de la liste si il est présent. Si x n'est pas présent, alors la liste est inchangée.

• del(p : NAT)Supprime l'élément à la position p. La position doit exister dans la liste.

- sort

 Trie les éléments de la liste en ordre croissant.
- 4. (25 pt) Modélisez en B le système suivant. Un ensemble d'utilisateurs U veulent accéder à un ensemble de ressources R. Un seul utilisateur peut utiliser une ressource à la fois. Si plusieurs utilisateurs veulent la même ressource, alors les demandes sont servies selon l'ordre d'arrivée; les demandes sont donc traitées comme une file d'attente. Spécifier les opérations suivantes.
 - demander(u: U, r: R)L'utilisateur u demande la ressource r.
 - allouer(r:R)Le système alloue la ressource r à l'utilisateur qui est en tête de la file d'attente de la ressource.
 - libérer(r : R) L'utilisateur libère la ressource r.

		Syntaxe	
Description	Expression	ASCII B	Définition/Exemple
suite vide	[]	[]	
suite par extension	$[t_1,\ldots,t_n]$	$[t_1,\ldots,t_n]$	
suite sur S	seq(S)	seq(S)	$\mid \{f \mid f \in \mathbb{N} \nrightarrow S \land finite(f) \mid$
			$\land \operatorname{dom}(f) = 1\operatorname{card}(f)\}$
suite non-vide sur S	$seq_1(S)$	$\mathtt{seq1}(S)$	seq(S) - []
suite injective sur S	iseq(S)	$\mathtt{iseq}(S)$	$seq(S) \cap \mathbb{N} \rightarrowtail S$
suite inj. non-vide sur S	$iseq_1(S)$	$\mathtt{iseq1}(S)$	$iseq_1(S) - []$
concaténation	$s_1 \widehat{} s_2$	s ₁ *s ₂	$[a,b] \widehat{\ } [c,d] = [a,b,c,d]$
premier élément	first(s)	first(s)	$s \neq [], \operatorname{first}([a, b, c]) = a$
sauf premier élément	tail(s)	tail(s)	$s \neq [],tail([a,b,c]) = [b,c]$
dernier élément	last(s)	$\mathtt{last}(s)$	$s \neq [], last([a,b,c]) = c$
sauf dernier élément	front(s)	$\mathtt{front}(s)$	$s \neq [],front([a,b,c]) = [a,b]$
inverse	rev(s)	rev(s)	rev([a,b,c]) = [c,b,a]
ajout de e au début de s	$e \rightarrow s$	e -> s	$c \to [a, b] = [c, a, b]$
ajout de e à la fin de s	$s \leftarrow e$	s <- e	$[a,b] \leftarrow c = [a,b,c]$

Table 1: Opérations et prédicats sur les suites

Fin de l'examen